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Abstract

A stability cell is a subset of the configuration space (C-space) of a set of actively
controlled rigid bodies (e.g., a whole-arm manipulator) in contact with a passive body
(e.g., amanipulated object) in which the contact state is guaranteed to be stable under
the influence of Coulomb friction and external forces. A first-order stability cell is a
subset of a stability cell with the following two properties: first, the state of contact
uniquely determines the rate of change of the object’s configuration given the rate
of change of the manipulator’s configuration; and second, the contact state cannot
be altered by any infinitesimal variation in the generalized applied force. First-order

*This research was supported in part by the National Science Foundation, grant no. TRI-9304734, the
Texas Advanced Research Program, grant no. 999903-078, the Texas Advanced Technology Program, grant
no. 999903-095, and NASA Johnson Space Center through the Universities’ Space Automation and Robotics
Consortium, contract no. 28920-32525. Any findings, conclusions, or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the granting agencies.



stability cells can be used in planning whole-arm manipulation tasks in a manner anal-
ogous to the use of free-space cells in planning collision-free paths: a connectivity graph
is constructed and searched for a path connecting the initial and goal configurations.
A path through a free-space connectivity graph represents a motion plan that can be
executed without fear of collisions, while a path through a stability-cell connectivity
graph represents a whole-arm manipulation plan that can be executed without fear of
“dropping” the object.

The main contribution of this paper is the conceptual and analytical development
of first-order stability cells of three-dimensional, rigid-body systems as conjunctions of
equations and inequalities in the C-space variables. Additionally, our derivation leads
to a new quasistatic jamming condition that takes into account the planned motion
and kinematic structure of the active bodies.

1 Introduction

The goal of robot planning research is to develop algorithms that can deduce sequences of
control commands which cause one or more robots to accomplish desired high-level tasks,
such as “Assemble the barbeque grill!” Besides imparting some degree of intelligence and
autonomy to a robot, such algorithms can help to relieve human operators from the tedium of
robot programming and debugging. Ultimately, these algorithms should be able to generate
reliable plans despite uncertainty and to plan sensor usage to resolve ambiguities and recover
from errors [8, 12, 23].

Notice that the command, “Assemble the barbeque grill!” requires the robot to perform
a task involving contact with movable objects. The problem of planning tasks of this type
has been termed the “manipulation planning problem,” by Latombe [20]. Because solving
this class of tasks requires the use of a (possibly complex) model of mechanics, it has been
studied less than its counterpart, the motion planning problem, in which contact is expressly
avoided. The planning problem considered here involves the quasistatic manipulation of
a single movable object by a system of actively controlled bodies, which we refer to as a
whole-arm manipulator (WAM). Henceforth, we will refer to this problem as the whole-arm
manipulation planning problem (WAM planning problem). In the next three paragraphs, we
will review the cell-decomposition approach to motion planning and compare it with our
stability-cells approach to planning WAM tasks. Note that while we will be focusing on
WAM applications, the theory could also be used to design mechanisms which have links
that are connected to other links only through unilateral contacts.

Solving a motion planning problem without contacts amounts to finding a coordinated
set of joint trajectories that defines a collision-free motion of a robot beginning from a given
initial configuration and ending in a given goal configuration. Motion planning is usually
performed in the system’s configuration space (C-space), where the system is represented as
a point (the C-point) and system motions are represented as continuous trajectories. One
approach to motion planning requires the decomposition of C-space into free-space cells (cells



corresponding to configurations in which the bodies are neither in contact nor overlapping),
while creating a free-space connectivity graph. The nodes of the graph represent the free-
space cells and the arcs connect nodes whose corresponding free-space cells share a boundary.
Note that the arcs of the free-space connectivity graph are undirected.

A completed connectivity graph provides a global description of the system’s free-space
and thus provides data from which a solution can be determined in two stages. First,
the graph can be searched for a path connecting the cells containing the initial and goal
configurations. Second, a plan can be extracted from the graph as a continuous curve
connecting the initial and goal configurations (and passing through the cells visited by the
path through the graph). As long as the curve remains within the free-space cells, the
planned manipulation can be performed with the assurance that no collisions will take place
(assuming a static environment).

In contrast, WAM planning requires the generation of a continuous trajectory in contact
space, the subset of C-space for which at least one contact exists and no bodies overlap.
Roughly speaking, a stability cell (S-cell) is a subset of a smooth “facet” or “patch” of
contact space for which an object can be manipulated in stable equilibrium by a whole-arm
manipulator. Therefore, the S-cells constitute the subset of contact space in which paths
may be constructed that satisfy the stability and kinematic constraints at every point. By
generating an S-cell connectivity graph, WAM tasks can be planned by graph searching.

The approach is illustrated in Figure 1, which shows two smooth “facets” of contact space
intersecting along a curve segment. The shaded regions represent S-cells. A trajectory of
the C-point in the S-cells corresponds to stable manipulation of the object. Points in the
unshaded regions are configurations which achieve contacts, but are unstable or are illegal
because they represent configurations for which bodies overlap (in position away from the
designated contact points). The bold path connecting the initial and goal configurations, I
and (5, represents a stable manipulation plan.

SMOOTH "FACETS"
OF CONTACT SPACE

SCELLS

Figure 1: Two Intersecting “Facets” of Contact Space with S-cells

In the frictionless case, quasistatic motion is reversible, so the connectivity graph is
undirected. As a result, the S-cell connectivity graph can be used in exactly the same



manner as a free-space connectivity graph is used in motion planning. Any path connecting
the initial and final configurations and lying entirely within the S-cells guarantees that the
object will not be “dropped” during manipulation. However, when Coulomb friction is
present, a valid path must remain within the S-cells and satisty nonholonomic inequality
constraints at every point.

This paper focuses on the special class of S-cells referred to as first-order stability cells
(FS-cells). FS-cells are the subsets of S-cells with the following two properties: first, the
state of contact is such that the velocity of the manipulator uniquely determines the velocity
of the object; and second, the contact state cannot be altered by any infinitesimal variation
in the generalized applied force. That is, if the contact state is to be altered by a force
disturbance, then that disturbance must be of (nonzero) finite magnitude. Intuitively, first-
order stability can be likened to a marble’s stability when it is located in the bottom of a
pyramid-shaped bowl: a (nonzero) finite force is required to dislodge the marble. In contrast,
a marble at the bottom of a smooth bowl can be perturbed by an infinitesimal force. In this
sense, manipulation plans composed of path segments through FS-cells are “more stable”
than those traversing general S-cells. It is clear that the contact state can also be altered
through kinematic sources, such as collisions and a vertex of one body sliding off the edge
of a face of another, but those types of transitions are easily predicted. In this paper we are
concerned with contact state transitions caused by variations in the applied forces.

The contributions of this paper include the conceptual and analytical development of
FS-cells for WAM systems with and without Coulomb friction. We represent our FS-cells
as conjunctions of equations and inequalities in the C-space variables, each of which can be
expressed as a polynomial by a simple substitution if desired. In addition, we derive a new
condition that describes all configurations for which a system moving quasistatically cannot
jam. Unfortunately, some of the constraints relevant to systems with Coulomb friction
and sliding contacts contain the joint velocity variables. This is unavoidable because the
directions of the friction forces at the sliding contacts are determined by the directions of
the corresponding relative velocities at the contacts, which in turn, are determined by the
joint velocities. Note that if all the contacts are rolling, then the equations are independent
of the velocity variables.

An interesting observation is that the dimension of an FS-cell (ignoring the possible
relevant velocity variables), with or without friction, is equal to the number of manipulator
joints. The reason for this is that as the number of contact constraints increases, the number
of degrees of freedom of system motion in C-space decreases, and for each lost degree of
motion freedom, the system gains one degree of freedom in the applicable joint efforts. The
invariance in the dimension of FS-cells is perhaps unexpected and even disappointing, since
sometimes artificial contacts are used to speed planning by reducing the dimension of the
free-space cells [9, 16, 18]. However, on the positive side, the dimension of FS-cells, ny, is
significantly less than that of the C-space, ng + 6.



1.1 Previous Related Research

The work presented here formalizes and generalizes previous work in dexterous manipulation
planning by Trinkle and Hunter [36] and Trinkle et al. [38]. In these papers, a particular
dexterous manipulation system was studied. In the first paper, a planner was developed
for the quasistatic frictionless case and a plan was generated to perform a particular dex-
terous manipulation task. In the second paper, that task was post-processed to determine
its validity in the face of uncertainty in the coefficients of Coulomb friction. The devel-
opment of FS-cells undertaken here will facilitate planning with friction, so that expensive
post-processing can be avoided. The concept of FS-cells is not new, but our results are
more general than previous results, as they are applicable to three-dimensional, whole-arm
manipulation systems with multiple movable passive objects.!

While many researchers have planned robotic tasks involving sliding contact, few have
done so for general multi-body mechanical systems. Most work has been limited to problems
which could be planned without cell-decomposing the C-space. Two such problems were
solved by Peshkin [29] and Brock [1]. Peshkin extended Mason’s results on planar quasistatic
“pushing” to plan spiral paths for a robot finger to localize disks in a horizontal plane and
Brock planned rotations and translations of a soda can between two fingers and pushed by
a third. Even though sliding was allowed, the geometries of the “grasps” were static, so
the equilibrium equations and contact constraints had to be imposed on only one point of
C-space. Jamming was not an issue. A somewhat more complex task, “baton twirling,” was
studied by Fearing. He considered a small number of primitive grasp geometries and control
strategies for which sliding terminated by jamming in a fixed stable grasp. His stable grasp
criterion was equivalent to Nguyen’s frictional form-closure? result for two-contact, planar
grasps with friction [27]. These cases were sufficient to plan and execute the twirling task.

Whitney’s analysis of the peg-in-hole problem [44] was one of the first to consider sliding
constraints in C-space. He did not pose the peg insertion task in C-space, but by formulating
the problem symbolically, he analyzed the quasistatic mechanical model in contact space.
His careful analysis of the jamming problem led to the development of the Remote Center
of Compliance wrist, which passively implements a highly successful strategy to avoid jam-
ming. An important aspect of Whitney’s jamming analysis that was different from previous
analyses (for example, the analysis of Simunovic [34]) was his use of compliance information.
Our analysis of jamming for general three-dimensional, multi-rigid-body systems uses the
compliance of the joints’ position controllers in a similar way. We use the knowledge of
the planned joint trajectories and the errors that would be induced by jamming to develop
conditions in which jamming is impossible. As will be seen below, these conditions are a
vital part of our first-order stability conditions.

'We study the specific case of only one manipulated object, but the extension to multiple objects is
straight forward.

ZNguyen refers to frictional form closure[4] as “force closure.” However, we reserve the use of the term
“force closure” for situations originally identified by Reuleaux [32]



The most general formulation of the manipulation planning problem in which sliding was
allowed, was published by Li and Canny [22]. However, in their formulation, they assumed
that the manipulated object could only contact the “hand” on the most distal link of each
“finger” and they have not yet developed a corresponding planning algorithm. They did not
discuss the possibility of jamming.

We now discuss in more detail, the previous work in manipulation planning that involved
the imposition of stability or other model constraints on C-space to plan tasks requiring
sliding and/or rolling between the object and the manipulator.

Brost planned pushing, dropping, and grasping actions guaranteed to remove the uncer-
tainty in the position and orientation of an object [2, 3]. In all these kinds of tasks, the
object could slide or roll on surfaces of the manipulator (in the fixturing task, the fixture can
be viewed as a stationary manipulator), and so, by our definition, these tasks were whole-
arm manipulation tasks. In both situations, part of Brost’s planning technique required
the imposition of sufficient conditions for object stability (with Coulomb friction) in contact
space to form stable regions analogous to our FS-cells. In fact, if friction and uncertainties
had been neglected, Brost’s regions of stability would have shrunk to become one-point FS-
cells. While Brost was thorough in his inclusion of uncertainty into his models and planning
techniques, his results were limited to planar systems.

The work presented here is applicable to spatial systems, but no uncertainty is considered.
This is because FS-cells were developed with an alternative approach to planning in uncertain
environments in mind. In future work, planning will be done in two stages: in Stage 1,
plans for the nominal quasistatic system will be generated; and in Stage 2, the plans will
be modified to make them robust to variations in the uncertain parameters as suggested
by Xiao [45] and Dakin [6] and time scaling techniques will be used to allow high-speed
execution [33]. Preliminary results on nominal plan modification when friction is uncertain
can be found in [14, 38]. Note that a dynamic model could replace the quasistatic one used
in Stage 1, but then nominal plan generation would become more time consuming.

Goldberg [17] planned orienting tasks for planar parts by a sequence of squeezing actions
executed with a “frictionless” parallel jaw gripper. The initial orientation of the part was
unknown, but the part was known to lie somewhere between the jaws. His work relied
on imposing simple, purely geometric jamming conditions on the system’s C-space. Here
jamming meant that the part had achieved a stable orientation with respect to the jaws,
thus preventing them from moving closer together. An algorithm for generating plans of
minimum length (fewest number of grasp actions) was developed for generalized polygonal
parts (i.e., parts whose boundaries are composed of circular arcs and linear segments). While
Goldberg’s orienting algorithm is complete for generalized polygonal parts, its extension to
three-dimensional parts appears to be extremely difficult. An approach based on our FS-cells
could be applied to three-dimensional parts.

Mason developed a mechanical model to predict the quasistatic motion of planar parts
pushed on a rough plane [26]. The part was free to slide against the “pusher.” Peshkin



applied Mason’s model to the pushing of polygons by “fences” [31, 30]. He developed a
technique to determine bounds on the pushing distance required for a part to achieve a
stable orientation in contact with a fence. He used this technique to design a parts feeder
which used a conveyor belt to drag the parts through a series of fences. The parts entered the
fence system in any orientation and emerged in the desired orientation. If the conveyor belt
were turned off and the fences were translated along the belt far enough, a part would emerge
in the proper orientation. This process can be viewed as whole-arm manipulation and the
planning aspect is in the design of the geometry of the manipulator (i.e., the arrangement
of the fences).

Donald and Pai [10] developed an algorithm to simulate the motion of simple, planar,
compliant parts as they are inserted into a fixtured base part. Coulomb friction was assumed
to act at the contacts, but not in the pawl joints. The objective of this work was to test
candidate assembly plans and provide information to a designer who would use it to modify
part designs. There was no attempt to create assembly plans, but the work could serve
as the basis for such a planner, because the prediction of all types of motions of the parts
was possible. In fact, the predictors, one of which detected jamming, were all written as
functions of the C-space variables.

The primary shortcoming of Donald’s and Pai’s work was the narrowness of the class of
applicable systems. The systems had to be planar with each pawl connected directly to the
root body by a passive, compliant, revolute joint. The pawls could not be multi-jointed and
the allowable insertion trajectories were limited to translations of the root body. The FS-cells
developed here are applicable to systems with multi-link “pawls” with compliance provided
by the joints’ servo-controllers, and general trajectories are allowed. As our jamming criterion
is more general than theirs, we have not been able to write it as a function of only the C-space
variables; it also contains a subset of the joint velocity variables.

In the next Section, we will present our assumptions, define the two relevant configuration
spaces, and present the applicable kinematic constraints and the equilibrium equations. In
Section 3, our definition of first-order stability cells will be motivated from the point of view
of frictionless systems and potential energy. The problems associated with directly extending
that definition to systems with Coulomb friction will lead us to a modified definition based
on Fourier’s Inequality [19]. Then we will focus on the frictionless case (Section 4), in which
the concepts of passive and active FS-cells will be introduced. In Section 5, the analysis
will be extended to include Coulomb friction and jamming. Finally, in Section 6, we will
conclude with a summary and suggestions for future work.

2 Preliminaries

The quasistatic model used in this paper is the same as the one used in [37]. For completeness,
we will briefly present the relevant assumptions and equations below.



Consider a system of three-dimensional rigid bodies with n. simultaneous contacts (Fig-
ure 2 shows a two-dimensional system, but we stress that our analysis is fully three-dimensional).
Bodies that are immobile with respect to the inertial frame, as indicated by a series of short
parallel lines on a boundary, comprise the base of the manipulator (bodies By and By in the
Figure). The manipulator is composed of the base and the bodies connected to it by revolute
or prismatic joints (bodies By-Bg in the Figure). The remaining bodies will be referred to
as objects (bodies B7 and Bg). Since they are not directly actuated, they can only move
in response to external and contact forces. Note that contact may occur anywhere on any

body.

W/

Figure 2: A Whole-Arm Manipulator in Contact with Two Objects

The analysis below will be based on what is commonly called a contact mode, which is
a particular assignment of a contact interaction (i.e., rolling, sliding, or breaking) to each
contact. For the most part, we will be concerned with contact modes consisting of only
rolling and sliding contact interactions, so n. = ng + ng, where ngr and ng are the numbers
rolling and sliding contacts, respectively. In the frictionless case, rolling is impossible, so
nr = 0. Breaking contacts will be considered when appropriate.

2.1 Assumptions

1. The bodies in the system are rigid polyhedra.
2. Coulomb friction exists at the contacts.

3. The Denavit-Hartenberg parameters of the WAM are known.



4. Each joint may be either position- or effort-controlled (effort-control implies torque-
control of revolute joints and force-control of prismatic joints).

5. Dynamic effects are negligible.
6. There is only one object.

7. No uncertainty exists.

Assumptions 1-5 are commonly made in analyses of robotic manipulation systems and
experimental results support their validity, particularly in cases involving sliding contacts
[5, 15, 26, 31, 38]. Assumption 6 is used to simplify the analysis presented here, but it may
be removed by straight forward extension of the model. Assumption 7 yields a deterministic
system model, thereby keeping the dimension of C-space as small as possible. The qua-
sistatic assumption, Assumption 5, can be removed by the inclusion of inertial forces in the
equilibrium equations (which then becomes D’Alembert’s Principle), replacing the kinematic
velocity constraints with the analogous acceleration constraints, using Dupont’s results on
jamming in dynamic systems [11], and augmenting C-space with the velocity variables. The
polyhedral body assumption in Assumption 1 can be relaxed by replacing the holonomic
rolling constraint with the proper nonholonomic constraints. The effect would be to raise
the dimensions of the FS-cells with rolling contacts and correspondingly, the representations
of those FS-cells would change. However, we point out that all other aspects of our analysis
is valid for curved rigid bodies, because they are based on forces and instantaneous velocities.

2.2 Configuration Space and Contact Formation Cells

Let the 6-vector, q, and the ng-vector, 8, viewed as column vectors, represent the configura-
tions of the object and the manipulator, respectively. Here ng is the number of joints in the
manipulator.® Note that in the planar case q would be a 3-vector. Together, a particular q
and 6 represent a particular configuration of the entire system. All possible (6 + ng)-vectors,
(qT HT)T, comprise the system’s C-space, X'. However, in situations calling for compliant
motion, we need to augment X with the elements of the joint effort vector 7. This aug-
mented C-space, denoted by Y, is the product of X with Euclidean ng-space, R", so has
dimension 6 + 2ng. Thus, we have J = X x R"™.

Our development of FS-cells depends on the notion of a “facet” of contact space, which
we refer to as a contact formation cell (CF-cell). Recall that a “contact formation” is a
specific set of elemental contacts [7]. The CF-cell is the “facet” of contact space corre-
sponding to a given contact formation. This is the subset of C-space for which at least

3Referring to q and @ as vectors is not strictly correct, because X is not a vector space. See [40] for more
precise definitions.



one contact exists and no bodies overlap.* A CF-cell can be expressed as a conjunction of
equations and inequalities in the system’s configuration variables [20, 40]. We refer to these
equations and inequalities as geometric C-functions; they include constraints which disallow
interpenetration of the bodies and take into account their finite extent.

Let us collect all kineatic equations enforcing the maintenance of the current set of
rolling and sliding contacts in the vector equation f,.,(q, @) = 0. For each of the ng contacts
designated as rolling, two more constraint equations (one more in the plane) are added to
mathematically prevent sliding. These constraints can be derived by adding two fictitious
faces to the contacting bodies and adding the two corresponding fictitious elemental contacts
(The intersection of the two fictitious faces and the actual face must be the contact point.).
Therefore, the length of f,., is 3ngr + ns (2nr + ns in the plane).

It is convenient to partition f,., into two subvectors: f,.,r and f,.,s containing the C-
functions associated with the rolling and sliding contacts, respectively. The C-functions
corresponding to the breaking contacts are placed in the vector f,.,5. Before these contacts
break, f,.,p are equal to zero. The breaking of a contact is indicated by the corresponding
element of f,.,5 becoming positive. The inequalities ensuring that the elemental contacts
remain within the finite bounds of the body features and disallowing interpenetration are
collected in the vector inequality h,.,(q,8) > 0.

Our formal definition of CF-cells, CFy and CFy, in the spaces, X and ), are:

CFr = {(a,0) € X [fye, = 0\ by, >0} (1)
ny = CFX X R"™. (2)

Note that in generic cases, the dimension of a CF-cell is 3ng 4+ ng less than that of the
ambient C-space. Recall that the vector f,., does not include f,.,5.

2.3 Kinematic Velocity Constraints

The kinematic velocity constraints, equilibrium equations, and Coulomb friction constraints
are fundamental to quasistatic manipulation planning, so we introduce them briefly here and
in the next subsection (for a detailed derivation with slightly different notation, see [37]).
Let us choose a coordinate frame for every contact. The origin of the :** frame coincides
with the i"* contact point. The 7, axis is normal to the tangent plane and is chosen to
point inward with respect to the object. The #; and 6; axes lie in the tangent plane and are
orthogonal.

*We note that a CF-cell as defined in this paper is a subset of the corresponding CF-cell defined in a
previous paper [13]. In that paper, the finite extent of the bodies was ignored and they were allowed to
overlap.

®Note that it has been shown that f,.,(q,8) = 0 is a manifold for any number of elemental contacts if
the bodies in contact are polyhedral [21]. The same cannot be said if the bodies are curved.
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The kinematic constraints enforcing the maintenance of the sliding and rolling contacts
are contained in the vector equation f,., = 0. Maintaining the :** rolling contact between

two polyhedral bodies requires the following:

a(fQEOR)i a(fgeoR)i
gq 99t~ g

do =0 (3)

where (f,.,r); is the vector of length 3 containing the C-functions pertaining to the i** rolling
contact and dq and d@ are the total differentials of q and 8, respectively. The corresponding
equation for the j* sliding contact can be formed by replacing (f,.,r); with (f,c.s);, where
the length of (f,..s); is one.

The partial derivatives of the C-functions are more commonly known as wrenches and
Jacobians in the robotics literature. Specifically, the partial derivatives of the usual C-
function (viewed as a row vector) with respect to the object’s configuration, q, is proportional
to the normal unit wrench of the i** contact, wl. The partial derivative with respect to
the manipulator’s configuration is proportional to, j;,, the row of the i** contact’s Jacobian
matrix corresponding to velocity in the direction of the contact normal (see [39] for detalls)
Similarly, if one fictitious plane used to enforce rolling at the i contact contains #; and #;,
and the other contains n; and o, then the derivatives of the corresponding C-functions are
proportional to the unit wrenches, w2 and wl, and Jacobians, j;, and j;, in the o; and ti

directions, respectively.

10

Differentiating f ., with respect to time yields the kinematic velocity constraints as fol-
lows: .
Wiq—J,.0=0 (4)

T

where the ((3ng + ns) X 6) matrix W} has three rows, wl , wk and wl for each rolling

for each shdmg contact, and the ((3ng + ns) X ng) matrix J4

109

contact and one row, m,

consists of the corresponding rows, ji,, Jit, and Ji,.

For the breaking contacts, we require:
Wiq—J3,50 >0 (5)

where the wl and j;, of the i’ breaking contact are the i"* rows of W1y and J,5.

2.4 Equilibrium Constraints

ith contact frame. The element

Let ¢; = [¢in it ¢io] be the i'" contact force expressed in the ¢
¢in 18 the normal component of the contact force; ¢;; and ¢;, are the components of the friction
force (these three components are also known as wrench intensities). Then the equilibrium
equations of the object (6) and the manipulator (7), and the Coulomb friction constraints (8)

and (9) are:

W.c,+Wic; + Woe, = —gu; (6)

11



Jch + JtTct + JOTCO = T — Sman (7)
c/Dic; > 0; i=1,...,n, (8)
c, > 0 (9)

"k component is ¢;, (c;

where ¢, is the normal wrench intensity vector of length n. whose #*
and ¢, are defined analogously); g.s; is the external wrench vector of length 6 acting on the
object; T is the ng-vector of joint efforts, with length equal to the number of joints, ng; gman
is the ng-vector of generalized gravity forces experienced by the joints of the manipulator; 0,
is the zero vector, D; = diag{u?, —1,—1}, with p; the effective coefficient of friction at the

" contact (see [37] for the definitions of the W and J matrices).

The normal wrench matrix, W,,, appearing in equation (6), transforms the normal com-
ponents of the contact forces to the universal frame. It’s columns are the unit wrenches, w;,;
for each contact. Similarly, W; and W, transform the frictional components of the contact
forces and have columns w;; and w;,. The normal Jacobian matrix, Jg, has columns ‘]3; and
maps the normal components of the contact forces into joint efforts (forces at prismatic joints
and torques at revolute joints). The Jacobian matrices, JT and J7, have columns j% and
jr and transform the frictional components of the contact forces. Note that equations (6)
and (7) represent dynamic equations of motion if g,; and gu., are redefined to include
inertial, Coriolis, and centripetal forces and moments.

3 First-Order Stability Cells

The definition of first-order stability for a grasped frictionless object is given in [39] as follows:
A grasped frictionless object is first-order stable if the object’s configuration corresponds to
a stationary point (i.e., an equilibrium configuration) of its constrained potential energy
and if every (kinematically) feasible perturbation of the object away from the stationary
configuration strictly increases its potential energy. Equivalently, the virtual work of the
gravitational force acting on the object for every possible nontrivial virtual displacement is
negative. Thus it follows that the virtual work is negatively proportional to the change in
the gravitational potential energy of the object.

It was shown in [39] that the object is first-order stable if and only if a certain linear
program has a unique solution. For this to be true, there must be 6 linearly independent
contacts (three in the plane) with strictly positive contact force magnitudes. This in turn,
implies that those 6 contacts will be maintained during manipulation in the neighborhood of
the equilibrium configuration and that a contact can only be broken by applying a disturbing
force of (nonzero) finite magnitude to the object.® Moreover, when the object has first-order
stability, the instantaneous joint velocities completely determine the object’s instantaneous
velocity (assuming that the joint velocities are kinematically admissible).

5This is a direct consequence of sensitivity theory in linear programming [24].

12



The natural extension of the definition of first-order stability to situations with Coulomb
friction is through Fourier’s Principle (also referred to as Fourier’s Inequality) [19]. In the
context of the dexterous manipulation problem studied here, Fourier’s Principle is: an object
in an equilibrium configuration with Coulomb friction is stable if the mazimum virtual work
is zero. Here the maximum is over all virtual motions (including the trivial virtual motion)
with the corresponding contact forces in effect.

By applying Fourier’s Inequality to the case of a frictionless particle at rest on a plane
perpendicular to the gravitational force, we see that the particle is “stable” (nonaccelerating).
However, in this situation the particle might be better classified as “marginally stable,”
because the virtual work of all virtual motions maintaining contact with the plane is zero.
Our first-order stability condition is obtained if we change Fourier’s Inequality to a strict
inequality for all nontrivial virtual motions and allow satisfaction by equality only for the
trivial virtual motion. This guarantees that the particle’s position corresponds to a unique,
nonsmooth local minimum of the potential energy, which implies that every nontrivial virtual
displacement of the particle is resisted by a (nonzero) finite restoring force. Physically, this
corresponds to the marble in the bottom of the pyramid-shaped bowl discussed earlier.

When Coulomb friction is present, the nonsmooth potential energy well can be replaced
by the analogous (negative) virtual work well. Consider the particle on the plane again,
but assume Coulomb friction is present. Then, in any position and for all nontrivial virtual
motions, the virtual work is negative. Thus, we can view the particle as being at rest at the
bottom of the (negative) virtual work well. The primary difference between this well and the
potential energy well, is that after a nontrivial virtual displacement, the particle generally
will not return to the bottom of the original (negative) virtual work well. Instead, it will
come to rest at the bottom of a translated copy of the original well. For example, a book at
rest on a table remains at rest until acted on be a force large enough to overcome friction or
gravity. If such a force is applied and then removed, the book will eventually come to rest
in a new location, but it will be at the bottom of another negative virtual work well.

Using the suggested strict form of Fourier’s Inequality facilitates the unified treatment
of the frictional and frictionless cases, but testing a configuration for first-order stability
with friction would require the global solution of a “mathematical program with equilibrium
constraints” [25]. These problems are known to be extremely difficult to solve in general.
Therefore, we will use the following definition of first-order stability that is easier to test and
guarantees the satisfaction of the stronger form of Fourier’s Inequality. Sufficient conditions
for first-order stability in both the frictionless and frictional cases will be derived in the next
two sections.

Definition (First-Order Stability): A grasped object will be referred to as first-order stable
if the velocity of the manipulator completely determines the velocity of the object and if the
contact mode for a given set of elemental contacts can only be altered by a (nonzero) finite
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disturbing force.” ®

Recall that “contact mode” refers to the set of elemental contacts and their interactions
(e.g., rolling, sliding, or breaking). Thus the contact mode is altered if the interaction of at
least one contact has changed. It is possible that a previously separated pair of body features
collide, giving rise to a new contact, or that a vertex slides off the face it has been in contact
with. While these types of contact mode changes are important and are included in our
analysis, they represent known boundaries of F'S-cells. This means that it is not difficult to
predict when such a mode change will occur. A more difficult problem that will be discussed
later is that of preventing unwanted mode changes like the conversion of sliding to rolling
when Coulomb friction is present. This problem is difficult, because the force at a sliding
contact lies on the boundary of its friction cone, but Coulomb’s Law allows the force at a
rolling contact to be on the boundary of the cone too.

4 Frictionless First-Order Stability Cells

In this Section, we derive relationships in the variables, q and 8, that when imposed on a
CF-cell, defines an FS-cell in the frictionless case. We also introduce two subclasses of FS-
cells: active FS-cells and passive FS-cells. During system motion, the C-point can be forced
to remain within an active FS-cell if the manipulator is operated under active compliant
control (e.g., some joints may be position-controlled while others are effort-controlled). In
this case, we show that the relevant relationships, the physical C-functions, depend on 7 in
addition to q and €. In contrast, the C-point can remain in a passive FS-cell without the
aid of compliant control; all joints may be position-controlled. Consequently, the physical
C-functions defining passive FS-cells do not depend on .

The first requirement of an FS-cell is that the object velocity, q, be uniquely determined
by the manipulator velocity, 6. Given the desired contact mode (i.e., the subset of contacts
to be maintained), equation (4) and inequality (5) must be feasible for the given choice of
#. Noting that in the frictionless case, W4 = W, and J, = J7T| trivially extending the
quasistatic model utility conditions given in [43] to three-dimensional systems, and special-
izing them to the frictionless case yields the following two conditions that guarantee the
uniqueness of q:

Rank(W,) = 6 (10)

3 Ep > Pjisnonsingular (11)

where P; = [WI' —J,EL] and EJ is a selection matrix. Specifically, EL is a matrix of zeros
and ones that selects enough linearly independent columns of J,, to make P; nonsingular.

EZT is formed from an (ng x ng) identity matrix by removing the columns corresponding to
the columns of J,, not used in P;. Note that Ep is generally not unique.

“Sufficient mathematical conditions will be given in Section 5.
8Note that this definition could be applied to dynamic systems with no modifications.
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The second requirement is that the contact mode be maintained despite infinitesimal per-
—8obj

- gman

makes the maintenance of the contacts kinematically feasible; it does not make it physically

turbations in the generalized applied force, . Satisfying conditions (10) and (11)

possible. However, the contacts will be maintained despite infinitesimal perturbations in the
generalized applied force if all the contact force magnitudes are positive, (i.e., ¢, > 0). To
see this, set the friction force components to zero in equations (6) and (7) yielding:

Wn _ _gobj
e 2
Then, let 71 = Ep7, Smnanr = Ep&man, and g5 = l - _ggbj ], so equation (12) can be
I — Bmanl

solved for the wrench intensities and a subset, 7, of the joint efforts as follows:

¢, = Adj(P])gr/d (13)
T = gmanII‘I’P?[Adj(P?)gI/d (14)

where Adj denotes the matrix adjoint operation, d is the determinant of P7, P7; is the
matrix of dimension (6 +ng —n. X n.) whose columns are those of J,, not included in Py, and
717 and g,..n11 are the corresponding elements of 7 and g,,.,. Since ¢, depends linearly on
the generalized applied force, it is clear that a nonzero finite perturbation of the generalized
applied force is required to drive any element of ¢, to zero (which is a necessary condition
for breaking a contact).

Equation (13) indicates that ¢, can be computed uniquely for any choice of joint efforts,
71. The efforts, 717, of the remaining joints must satisfy equation (14) if the manipulator
is to maintain equilibrium. Thus the joints corresponding to 7; should be effort-controlled,
while the others are position-controlled. If the position controllers maintain their set-points,
then their efforts will satisfy equation (14) (see [43] for more discussion).

We summarize the frictionless first-order stability conditions in the following theorem:

Theorem 1 An active, three-dimensional, multi-rigid-body system with frictionless contacts
has first-order stability if equations (10) and (11) are satisfied, the joints corresponding to T
are effort-controlled, the other joinls are position-controlled, and the wrench intensity vector,
Cn, as defined by equation (13) is strictly positive.

Proof: The development immediately preceding the statement of the theorem serves as a
PTOO . o q.e.d.

Corollary 1 A first-order stability cell of an active, three-dimensional, multi-rigid-body sys-
tem with frictionless contacts must have between 6 and ng+6 contacts, i.e., 6 < n, < 6+ ny.
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Proof: This Corollary follows immediately from the equations (10) and (11). ....... q.e.d.

As noted above, the conditions (10) and (11) and the inequalities of Corollary 1 are the
quasistatic model utility conditions (specialized to the frictionless case) given in [43]. The
two main differences between first-order stability and quasistatic model utility are that: for
the former condition, all of the wrench intensities must be positive and some of the joints
must be effort-controlled, while for the latter condition, only a linearly independent set of
wrench intensities must be positive and there is no requirement on the joint control modes.

We are now in a position to define the physical C-functions for frictionless systems as
functions of q, 8, and 7. As stated above, during manipulation in a particular FS-cell, the
contact force at each contact will be compressive. However, when a contact breaks (or a new
contact is established), the corresponding contact force will be zero. These situations must
be dealt with explicitly in order to plan changes in the contact mode. Therefore, the wrench
intensity vector, ¢,,, is partitioned into two vectors of physical C-functions, h,, and {1,
containing the positive and zero-valued elements, respectively. Also, equation (14) represents
physical constraints on the efforts that may be applied at the effort-controller joints. Denote
the corresponding vector of physical C-function as f,,.

Let Es and Eg be the matrices that select the subsets of sliding and breaking contacts,
respectively. Then h,,, f,5,1, and f,442 can be expressed as functions of q, 8, and T as
follows:

h,iy(q,0,7) = Es(Adj(P7(q,9))g1(q,0,7)/d(q,0)) >0 (15)
foi(q,0,7) = Ep(Adj(PI(q,0))g:(q,6,7)/d(q,6)) =0 (16)
for2(a,60,7) = T — Gnanrr(q,0,7)

— P7(q,0))Adj(P7(q,0)))g1(q,0,7)/d(q,0)) =0 (17)

where f,;,1 has length [ € {0,1,2,...,n.}, hy, has length n, — [, and f,,2 has length n. — 6.
Note that when no contacts are breaking, f,;,; is degenerate, and when there are exactly 6
contacts, f,;,2 1s degenerate.

Finally, we must point out that g.;; and g,.., are arbitrary generalized external forces.
However, equations (15-17) are only functions of q, €, and 7, if g,; and g4, are. One
important case for which this is true, is when g.;; and g4, are due to gravity. Henceforth,
we will assume that g.; and g4, are functions of q and 6.

4.1 Passive Frictionless FS-cells

The solution of the normal wrench intensity vector, ¢,, in equation (13) suggests two distinct
classes of FS-cells: those which depend on 7 and those which do not. We call the cells that
do not depend on T passive F'S-cells. For an FS-cell to be passive, there must be 6 contacts
(i.e., n. = 6). When this is true, Ep is degenerate, so P = W, and g; = —g.;. In this
situation, the object will be first-order stable if and only if W1 exists and all the elements
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of ¢, are positive. As a consequence, f 1 is degenerate and f,;,2 becomes an auxiliary
condition for computing 7, so g7 and h,;,, lose their dependence on 7. Physically, these
conditions imply that the external wrench alone will cause the object to comply with the
manipulator as it moves. We refer to this type of system motion as passively compliant,
because no active effort control is required at any joint to maintain the contact mode.

Let us denote the passive FS-cell for a given contact formation by FSp. This FS-cell can
be formed by the intersection of the CF-cell in X', CFy, and the subset of X in which the
contact forces are all compressive, Sp. Thus we have:

FSp=CFyNSp (18)

where Sp = {(q,0) € X | h,,, > 0}. Recall that for passive FS-cells, f,;,1 must be
degenerate. The other physical C-function vector, f,;,2, uniquely defines the joint efforts for
each configuration in the passive FS-cell.

The elements of W, are rational trigonometric functions of the elements of q and 8, and
are independent of 7. Therefore, from equations equations (15-17), we see that the physical
C-function of interest, h,y,, is a rational trigonometric function of the elements of q and 8,
and is independent of 7. However, some cell-decomposition algorithms require a polynomial
representation. Fortunately, the set Sp can be rewritten as the union of two sets, Sf and
Sp, whose defining functions can be converted into polynomials by substituting u; = tan(%)
for each 7 € {1,...,n.} where ¢; is the :'* angular parameter in the elements of q and 6.

Thus Sp is given as:

Sp=8tUS» (19)

where the sets S and Sp are given by:
St = {(q,0) € X | —EsAdj(W,,)gp; > 0 /\ Det(W,,) > 0} (20)
Sy = {(q,0) € X | —EsAdj(W,,)g; < 0\ Det(W,,) < 0}. (21)

An alternative approach taken in [13], is to treat cos(¢;) and sin(¢;) as independent variables
and add the constraint cos*(¢;) + sin*(¢;) = 1, for each 7 € {1,...,n.}.

We reiterate that for passive FS-cells, there must be 6 contacts, all with positive contact
force magnitudes. Thus, the number of breaking contacts, [, must be zero. The 6 contacts
correspond to 6 geometric C-function equations, f,., = 0, written in the 6 4+ ng variables
of X. Thus the dimension of passive FS-cells is typically ny (the inequalities h,, > 0
and h,y, > 0 typically do not affect the dimension). In certain nongeneric situations, it is
possible for the dimension of an FS-cell to be different from ng, but such situations are rare.
If during manipulation in a passive FS-cell, [ becomes positive, the corresponding [ contacts
are about to break. In this case, the object may still be stable, but stability can no longer
be determined by the signs of the elements of ¢, ; second- and/or high-order effects become
important [35]. Also, in this case, the equations f,., = 0 and f,,,1 = 0 define a cell that
represents part of the boundary between the FS-cell in question and portions of C-space for
which the object is either higher-order stable or unstable [41].
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4.2 Active Frictionless FS-cells

When the number of contacts, n., is greater than 6, then the elements of the wrench intensity
vector, ¢, are linearly dependent on the joint efforts, 7 (see equation (12)). As discussed
earlier, maintaining the current contact formation requires “active” effort-control of n. — 6
joints. Therefore, we refer to the class of FS-cells as active FS-cells. One apparent difficulty
with active FS-cells is that the wrench intensity and joint effort vectors cannot be uniquely
represented in C-space, X', as they can be for passive FS-cells. Therefore, active FS-cells
must be defined in the augmented C-space, Y, of all possible values of q, 8, and .

The definition of an active FS-cell, denoted by FS§ 4, is given as:
FS4=CFyNSa (22)

where the set CFy is the CF-cell in Y corresponding to the given contact formation, the set
Sy, is defined as: Sy = {(q,0,7) € V| fn, = 0Ahyp, > 0}, with f,;,, formed by vertically
concatenating f,n,1 and f,;,2. As Sp was partitioned into two subsets based on the sign of
Det(W,,), so we can partition S4 based on the sign of Det(Py).

Despite the fact that the definition of active FS-cells depends on q, 8, and 7, their
dimension is still only ng in the generic case if no contacts are breaking or forming (i.e.,
[ = 0). This can be seen by noting that while the dimension of the augmented C-space,
Y, is 6 + 2ng, the numbers of geometric and physical C-function equations grow to n. (the
number of elements of f,.,) plus ng — (n. — 6), (the number of elements of f,;,2). Physically,
this result corresponds to the well-known fact that in rigid body systems, the position and
effort of a joint cannot be controlled simultaneously.

5 Frictional First-Order Stability Cells

When friction is present, the conditions for first-order stability become more complex. This
is partly because contacts may roll or slide, but the most difficult problem is that Coulomb’s
Law is ambiguous when a contact force lies on the boundary of the friction cone. This
means that a sliding contact may unexpectedly convert to rolling without any change in
the generalized applied force. This would violate our requirement that only a (nonzero)
finite perturbation of the generalized applied force can cause a change in the contact mode.
Nonetheless, as is shown below, it is still possible to derive conditions under which conversion
from sliding to rolling is impossible. However, the conditions are nonholonomic, as they
depend on a subset of the system’s velocity variables.

The kinematic constraints for a given contact mode are again given by equation (4) and
inequality (5). Thus for ¢ to be uniquely determined by €, we have:

Rank(Wy4) = 6 (23)
3 Ep > Pjis nonsingular (24)
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where the selection matrix Ep now has dimension ((3ng+ns —6) X ng) and Py is now given
by P; = [W} — J4EL]. Again, it is implied that the subset of joints corresponding to
0; = Ep8 should be effort-controlled.

The second condition required for first-order stability is that the contact mode be main-
tained despite infinitesimal perturbations in the generalized applied force. As in the friction-
less case, a contact will not break if the normal component of its contact force is positive.
Similarly, rolling contacts will continue rolling if their contact forces lie strictly within their
friction cones. Therefore, we require:

c/Dic; > 0, VieR (25)
Cin > 0, Vie{l,...,n.} (26)
where R is the subset of indices, {1,...,n.}, corresponding to the rolling contacts.

For every sliding contact, notice that Coulomb’s Law allows us to eliminate the unknowns
¢it and ¢;, using the following equations:

it = —Cpvppi/\JvEi+ v, VieS (27)
Cio = —CinUiopti[\JVE +0vE, VieS (28)
where v;; = wlq —jité, Ve = WL Q —jioé, and S is the subset of {1,...,n.} corresponding

to the sliding contacts.

Substituting equations (27) and (28) into equations (6) and (7) yields (see [43] for details):

W I -

where ¢4, the applicable wrench intensity vector, has length 3ng + ng. This vector contains
three wrench intensities (¢;n, ¢;t, and ¢;,) for each rolling contact, ¢ € R, but only one wrench
intensity, ¢;, for each sliding contact, 2 € §. Note that the dimension of Wy, is the same
as that of W 4. However, the columns of W4, corresponding to the sliding contacts are
wrenches corresponding to contact forces on the boundaries of the friction cones, while those
in W4 correspond to the contact normal directions. The matrices J4, and J4 are similarly
related. Also, notice that through the substitution of equations (27) and (28) just performed,
the system’s velocity variables have just entered the system equilibrium equation, equation

(29).

In the frictionless case, the existence of P7! facilitated the task of checking whether all
the contact force magnitudes were positive, because then they could be uniquely determined.
When friction is present, we must check the satisfaction of inequalities (25) and (26). This
will be facilitated by imposing the condition that the applicable wrench intensity vector, ¢4
(and therefore the contact forces) be uniquely determined by the generalized applied force.
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Comparing equation (29) to equation (12) implies that the following conditions must be
satisfied for the generalized applied forces to determine the contact forces uniquely:

Rank(Wy,) = 6 (30)
1 Eg 3> Qpis nonsingular (31)
where Eq is a selection matrix and Q; = [WY, (E@J%,)"]". Here the implication is

that the joints corresponding to 7; = Eg7 should be effort-controlled. Also, the selection
matrices Ep and Eg imply two control mode partitionings of the joints, but since only one
partitioning can be applied at a given time, Ep must equal Eg.?

The satisfaction of the conditions above prevents the loss of contacts and the conversion
of contacts from rolling to sliding. This leaves one final requirement: no sliding contact
may convert to rolling. Since Coulomb’s Law is ambiguous in this situation, we must bring
other aspects of the model into the picture to determine when conversion is possible. In
particular, by assuming that such conversions take place, we derive conditions under which
this assumption is contradicted.

Suppose that contact ¢ is sliding. Then the contact force lies on the surface of the friction
cone (see Figure 3). Denote the unit wrench associated with that contact force by w;, and

let ¢;; be the corresponding wrench intensity. Note that w, (scaled by /1 4 p?) is a column
of the matrix W 4,. Next, let w;, be the unit wrench, with intensity ¢;,, corresponding to a
force in the contact tangent plane and perpendicular to the sliding contact force. Further,
let w;, be the unit wrench, with intensity ¢;., corresponding to a force lying on the friction
cone diametrically opposite to the actual sliding contact force direction. Notice that ¢;, and
¢;» must be nonnegative and because the contact is sliding, ¢;,, and ¢;, are initially zero.
Consistent with constraint (26), ¢;; is initially positive.

Assume contact ¢ converts to rolling. This conversion adds two new kinematic constraints
to equation (4), typically leading to kinematic inconsistency. Thus the planned joint trajec-
tories (or at least a subset of them) are now impossible to execute accurately. Henceforth,
we will refer to such as situation as “jammed” even though the joints may continue to
move due to compliance (active or passive). The position-controllers cannot sense the jam
instantly, so they continue execution “unaware.” As errors accrue, the joint efforts in the
position-controlled joints build accordingly. Assuming PID position-controllers, we have:

Ejsgn(en) = Ejsgn(ATH) (32)

where Ej is the selection matrix which selects the jammed joints (i.e., the position-controlled
joints whose trajectories are altered by the new kinematic constraints), e;; is the vector of
joint errors at the jammed joints, and A7y is the vector of changes in the control efforts at
those same joints. Note that effort-controlled joints do not jam; they just continue to apply
the desired effort regardless of the motion of the rest of the system.

9A detailed discussion of this issue can be found in [43].
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Figure 3: The Wrenches, w;,;, w;,, and w;, in Relation to the Friction Cone

Consider a situation in which only one contact, ¢, is sliding. The equilibrium equations
can be written as follows:

C
VVTA;A ngy W%Z ciA _ —8obj (33)
JA}L Jiy Jiz c'l/ T — Zman

where the vectors, Jz; and j%, are the columns of the Jacobian matrix corresponding to the
unit wrenches, w;, and w;,. If contact 7 converts to rolling, then the system of equations,
(32) and (33), must be feasible for some nonnegative ¢;.. If not, the rolling assumption is
contradicted.

Using Eg to partition equation (33) yields:

CA
[ Qr yir zi ] ey | = [TU g1 ] (34)

Qrr yirr zir — Smanll

The vector of efforts at the position-controlled joints, 777, can now be written as:
-1 —8obj "
T - + 8man
I QQ; [ = Gant ] Smanll
+ (virr — QuQr'yir)ciy, + (zirr — QrQr ' zir)ci. (35)
When ¢;, = ¢;, = 0, 77 takes on its value just prior to jamming. This implies that the third
and fourth terms of the right hand side of equation (35) represent the changes in the efforts

of the jammed joints’ position controllers, A7, due to the position errors induced by the
jam.
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Let X denote the diagonal matrix with ¢** diagonal entries given by sgn(eirr), where ez
is the " element of e;;. Equation (32) implies the following inequality:

XE;AT;; > 0. (36)

The physical interpretation of inequality (36) is that the directions of the changes in the
efforts of the jammed joints must be consistent with their errors. Note that it is possible
that inequality (36) be satisfied by equality only if the conversion of sliding to rolling happens
to generate constraints that do not make the kinematic velocity constraints (4) inconsistent.
Since this situation is extremely rare, we will not consider the possibility further.

Substituting the third and fourth terms on the right hand side of equation (35) into
inequality (36) yields the conditions for possible jamming (i.e., the following are necessary
conditions for jamming):

V

XE;((yirr — QuQr'yir)  (zirr — QuQr'zir)] l z”" 0 (37)

1z

Y

Ciz

0. (38)

We stress that satisfaction of the system (37) and (38) implies that the situation is “ripe”
for jamming. If a conversion from sliding to rolling occurs, then ¢;, will increase driving the
contact force inside the friction cone, thus sustaining the jam. However, if the system of
inequalities is not feasible, then contact ¢ cannot convert to rolling, because the changes in
the joint efforts corresponding to the change in the :** contact force are not consistent with
the joint position errors, e;j;.

Extending the possible jamming conditions, inequalities (37) and (38), to situations with
more than one sliding contacts leads to:

Cy
C,

\%

XE;[(Yrr—QuQr'Y:) (Zn—QuQr'Zr)] [ 0 (39)

v

C.

0 (40)

where the matrices Yy, Y7, Z;, and Zj; are formed by horizontally concatenating ng vectors
Yir, Yiir, Z;1, and Z;r71. The matrix, XEJ[(YI[ — Q[[Q;IY]) (Z][ — Q[[Q;IZ[)], is referred
to as the jamming matriz. The numbers of rows of the matrices subscripted by [ and 11
are 3ng + ns and 6 4+ ny — 3ng — ng, respectively, so the numbers of rows and columns in
the jamming matrix are the number of position-controlled joints, 6 +ny — 3ng —ng, and the
number of sliding contacts, ng, respectively.

The above development is summarized by the following theorems and corollaries.

Theorem 2 An active, three-dimensional, multi-rigid-body system with Coulomb friction
acting at the contacts cannot jam if the system of inequalities (39) and (40) is infeasible.

Proof: The preceding derivation serves as a proof. ......... ... ... ... ... q.e.d.
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Corollary 2 An active, two-dimensional, multi-rigid-body system with Coulomb friction act-
ing al the contacts cannot jam if any row of the matriz, XE;(Z1; — QrQ;'Zs), has all
nonpositive elements.

Proof: In the planar case, c, is zero by definition. Also, jamming is impossible only if the
product (Z; — QHQleI)cZ has all positive elements. Since ¢, is nonnegative, it is clear
that the system of inequalities (39) and (40) is infeasible if it has at least one row with all
elements nonnegative. . ... ... q.e.d.

Theorem 3 An active, three-dimensional, multi-rigid-body system with Coulomb friction
acting at the contacts has first-order stability if equations (23-26), (30) and (31) are satisfied
with Ep = Egq, the joinls corresponding to T are effort-controlled, the other joinls are
position-controlled, and the system of inequalities (39) and (40) is infeasible.

Proof: The preceding derivation serves as a proof. ......... ... ... ... ia.... q.e.d.

Corollary 3 A first-order stability cell of an active, three-dimensional, multi-rigid-body sys-
tem with Coulomb friction acting at the contacts must have between 6 and ng + 6 contact
constraints, i.e., 6 < 3ngp +ng < 6 + ng.

Proof: This Corollary follows immediately from the rank condition on W 4 and the existence
of Py which is nonsingular. . ... . .. . q.e.d.

Jamming Example

Figure 4 shows a simple planar system in which the stick finger begins at an angle just
less than 7/2 and rotates clockwise under position control, pushing the block to the right.
The contact mode of interest is the one maintaining the three contacts shown (the edge-
edge contact is modeled as two point contacts between the palm and two corners of the
block). For the commanded clockwise finger motion, this system exhibits jamming in some
configurations and first-order stability in others. For simplicity, assume that the coefficients
of friction, p;, at the three contacts are equal. Then, given that the world frame has its origin
on the axis of the revolute joint of the stick finger and the external force (in this example,
the gravitational force) acts in the —y-direction, the relevant wrench and Jacobian matrices
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Figure 4: A Planar Manipulation System

are defined as follows:

0 0 sin(6) 0
W, =11 1 —cos(6) J.=1 0
r x4+ v -
—1 —1 cos() 0
W,=| 0 0 sin(d) J;=10
0 0 0 0
[ —p —p sin(0) — pcos(6) 0 (41)
WA,LL =Qr= 1 1 —cos(ﬂ) - ,usin(@) JA;L = QF}FI 0
|z x4+ — -
7 sin(6) + pcos(0) 0
W.=Zr=|1 1  —cos(0) +psin(6) | J.=Ja=2]=|0
lz x4+ p - 7
where v = V22 + a?. Assuming g,,., = 0, the generalized applied force is given as:
0
—8obj mg
= 42
lT_gman] ({E—|—5/2)mg ( )
T

where m is the mass of the block and ¢ is the magnitude of the gravitational acceleration.

If a contact converts to rolling while the other contacts are maintained, it is clear that
motion will cease. Then, since the planned finger motion was clockwise rotation, the error
err will be negative, leading to X = —1, and because the joint was position-controlled and
its ability to accurately execute its planned trajectory has been affected, we have E; = 1.

To further simply our discussion and the algebra, let p = 0.5, « = 1 and 3 = 2. Now,
the matrices given above satisfy equations (23), (24), (30) and (31) as long as the left edge
of the block is not positioned at z = 3/4 or x = oo (in those configurations, the matrices
W, and W4 are nonsingular, respectively). Since all contacts are sliding, inequality (25)
is irrelevant, but inequality (26) must be satisfied. Also, the system of inequalities (39)
and (40) must be infeasible to be sure that jamming is impossible.
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Maintaining the chosen contact mode allows the elimination of the finger joint angle from
the equations. Then, the applicable wrench intensity vector, ¢4, is given as:
_ mg(3+z)/4
2z—3/2/4
Smg(l—x
Ca=| ™ 2gz—3/2 (43)
_ mgVx241

2032
and the (1 x 3) jamming matrix XE;(Z;r — QrrQ7'Zy) is:
2(z% 4+ 1) 2(z% 4+ 1) 5 (22 = 5/2)Va? + 1
\/ 1-— . 44
(2:1:—3/2 2z — 3/2 v 2z — 3/2 (44)

Note that all three elements of ¢4 are positive and all the elements of the jamming matrix
are negative when 0 < = < 3/4. Thus the system is first-order stable over that open interval.

When z > 3/4, all the elements of the jamming matrix are positive, so jamming is possible
and first-order stability is lost. As mentioned earlier, a system’s FS-cell can be represented
by an ng-dimensional set; in this case, ng = 1 and the FS-cell projected onto the z-axis is
the open interval, (0,3/4).

Notice that at the point z = 3/4 the active edges of the friction cones are all parallel,
but that no pair of the cones (or negative cones) see each other as is required for frictional
form closure [4, 42].1° In fact, only the cone on the finger and the cone on the left side of the
block can ever see each other, and this first happens as x increases beyond 2.0. However,
once x increases beyond 3/4, the system of inequalities, (37) and (38) is infeasible, and one
can show that no contact mode other than three rolling contacts is feasible. Therefore the
system must jam even though the grasp does not have frictional form closure. According to
Omata, the two friction cones on the palm could replaced by a single “equivalent” friction
cone [28]). This cone has its apex 2 distance units below the center of the bottom of the
block and its edges are colinear with the outer edges of the two individual friction cones.
This cone and the cone on the finger do not “see each other” until z > 1.0. So jamming still
will occur before frictional form closure is achieved by Omata’s model. Our explanation for
this counter-intuitive result is that previous form closure results do not take the kinematic
structure of the grasping mechanism into account, but we do.

The reason for this apparent inconsistency is that Nguyen’s results do not take the
kinematic structure of the mechanism into account and they are only valid for two point
contacts (in planar problems).

6 Conclusion and Future Research

We have introduced the concept of first-order stability cells (FS-cells) for spatial, quasistatic,
multi-rigid-body systems with Coulomb friction acting at the contact points. These cells are

10Recall that Nguyen refers to frictional form closure [4] as “force closure” [27]. However, we reserve the
use of the term “force closure” for situations originally identified by Reuleaux [32].
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ng-dimensional subsets of C-space in which paths corresponding to whole-arm manipula-
tion tasks which can be executed without jamming. Due to the generality of the systems
considered here, our jamming results are more general that previous ones for quasistatic
systems. In specific, our results take into account the kinematic structure of the whole-arm
manipulator and the joint control modes.

F'S-cells have been partitioned into two classes: passive FS-cells and active FS-cells. They
are characteristically different in that the system can maintain passive first-order stability
simply position controlling the joints, while the maintenance of active first-order stability
requires joint compliance, which would typically be achieved through active compliance
control. While active compliance control is usually more difficult to implement than position
control, its implementation in a whole-arm manipulation system can significantly increase
the array of tasks that can be successfully executed. This is partly because some tasks can
simply not be executed without compliant control (e.g., manipulation tasks that require the
use of highly stable, form-closed grasps).

Assuming that the external forces acting on the system are functions of the system
configuration (e.g., gravitational forces), the relationships defining frictionless FS-cells are
functions of the C-space variables; q and 6 for passive FS-cells and q, €, and 7, for active
FS-cells. When Coulomb friction is present, the defining relationships still are functions of
q, 0, and 7, but some of them (those ensuring system equilibrium and preventing jamming)
are also functions of a subset of the velocity variables (those corresponding to the position-
controlled joints). The velocity variables cannot be eliminated, because they reflect the
fundamental dependence of the friction forces on the relative velocities at the contacts. Thus,
in general, a planner based on the results of this paper must be able to handle nonholonomic
constraints.

We have made some progress toward implementing an FS-cell-based planner for planar
systems in a parallel/distributed computing environment using the software tools, HeNCE
and PVM. Once fully implemented, plans generated will be downloaded to our prototype,
planar, whole-arm manipulator. After gaining sufficient experience with this system, we
intend to implement our planner for spatial systems.
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