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Abstract. This paper is a summary of a comprehensive study of the problem of predicting the
accelerations of a set of rigid, three-dimensional bodies in contact in the presence of Coulomb friction.
We begin with a brief introduction of this problem and its governing equations. This is followed by
the introduction of complementarity formulations for the contact problem under two friction laws:
Coulomb’s Law of quadratic friction and an approximated pyramid law. Existence and uniqueness
results for the complementarity problems are presented. Algorithms for solving these problems are
proposed and their convergence properties are discussed. Computational results are presented and
conclusions are drawn.
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1 Introduction

The dynamic multi-rigid-body frictional contact problem is concerned with predicting the acceler-
ations and contact forces of several rigid bodies in contact under friction. For our purposes, the
dynamic system is assumed to consist of a number of passive, three-dimensional, bodies referred to
as objects that move in response to external forces and forces arising from contacts with a number
of active (or actuated) bodies referred to as manipulator links. Multi-rigid-body contact problems
crop up in many engineering applications in which it would be desirable to ignore deformations of
the bodies. Thus despite some deficiencies, the multi-rigid-body contact problem is quite important.
Indeed, models of multi-rigid body contact have recently received great interest in the virtual reality
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(VR), graphics, and robotics research communities. The VR community is motivated by the desire
to enhance the believability of the scenes in which the VR user is submersed. Currently, systems
cannot handle situations involving the loss of contact and multiple contacts between objects [17], but
progress is being made toward this goal by Baraff [1], who has followed Lotstedt’s lead in the applica-
tion of complementarity theory and pivoting methods [15]. The robotics and graphics communities
are interested in the inverse problem. Specifically, roboticists and animators want to discover input
trajectories that accomplish a task or action described at a very high level [14, 16]. However, most
current systems require too much interaction and input from the human user to be effective. Al-
though some simple robot task planners and animators’ tools have been successfully developed that
require very little user interaction [3, 6, 25], their enhancements have been significantly hampered
by a lack of understanding of rigid body contact mechanics.

The governing equations and constraints of the multi-rigid-body frictional contact problem are
the Newton-Euler equations of motion, unilateral and bilateral kinematic consrtaints, a friction
law, contact conditions, and the maximum work principle. The bilateral (equality) constraints are
associated with permanent joint connections. In contrast, the unilateral (inequality) constraints
disallow interpenetration of the bodies at their contact points while the contacts persist. The contact
conditions stipulate complementary relations between the normal forces and accelerations, while the
maximum work principle implies that the tangential forces oppose the tangential accelerations.

A common approach to solving the multi-rigid-body contact problem, as seen in the DADS
package developed by Haug [7], has been based on a formulation of the problem as a system of
differential algebraic equations (DAEs). In such an approach, the contact interactions (e.g. rolling,
sliding, and breaking) are assumed known, so that all unilateral constraints can be replaced by
bilateral constraints. The DAFEs are integrated over time while contact forces and velocities are
monitored to determine when to change the assumed contact interactions. While the DAFE approach
seems to work well in practice, its basic assumption that one can always deduce the impending contact
interactions is fundamentally flawed for rigid body systems. Even the simple example of a rod in
one-point contact (initially rolling) with a tabletop can have multiple solutions for its impending
motion (one with continued rolling, another with the initiation of sliding). This makes choosing the
“correct” set of kinematic constraints impossible in some situations.

The present paper reports analytical and computational results obtained in our study of the three-
dimensional multi-rigid-body contact problem subject to quadratic Coulomb friction laws and their
variations. This paper is a continuation of the previous one [19] in which various complementarity
formulations were given for this contact problem and a main existence result was established under
the assumption that all contacts are initially rolling. Using the formulations in the previous paper
and assuming small friction coefficients and full row rank of the “system Jacobian matrix,” we
establish herein existence and uniqueness results for the contact problem allowing initial sliding
and rolling; we show that for a friction pyramid model and under the same assumptions, Lemke’s
algorithm [5, Algorithm 4.4.5] will always compute a solution of the multi-rigid-body contact model;
we also describe a feasible interior-point method [12] for solving the same model. Finally, we report
computational results from our MATLAB implementation of these two methods.

2 The Multi-Rigid-Body Contact Model

In this section, we present the fundamental mathematical model for the three-dimensional multi-
rigid-body frictional contact problem. During an integration step of the overall continuous-time



problem, the model must be formulated and solved to determine the accelerations of the bodies.
The accelerations are then used to update the velocities and positions. After the update, the bodies
would be tested for collisions. Upon the detection of a collision, an impulse model would be applied.
Then the process would repeat. In this paper, we will assume that an impulse model has already
been applied if necessary. We will study only the formulation of the equations of motion and the
applicable solution techniques for a given time step. The time instant for which the equations of
motion are formulated will be referred to as the current time. The other assumptions that will apply
for the remainder of this paper are:

The bodies are rigid.

The normal direction at each contact is well-defined.

Dry friction exists at each contact point.

Each manipulator joint has one degree of freedom.

U= W N

The manipulator has no closed loops formed by the links and joints. Loops involving (unilateral)
contacts are allowed.

6. All links are connected (at least indirectly) to ground.

Note that the fourth assumption is not limiting, because joints with more than one degree of freedom
can be modeled as a set of one degree-of-freedom joints. The reason for the fifth assumption is to
avoid having to consider load distribution in the manipulator joints. This assumption could be
removed by applying known techniques. Assumption 6 is applicable to typical Earth-bound systems,
(e.g., manufacturing systems). Removing this assumption would fundamentally alter the formulation
of the model. Notice that there are no restrictions on the shapes of the bodies.

2.1 The Newton-Euler equations

We begin by numbering the objects from 1 to n.p; and manipulator links from 1 to nman. All
grounded links are considered to be a single manipulator link. When two bodies 7 and k& (with ¢ # k)
are in contact, we label the contact point as j and consider this point 7 as associated uniquely with
the pair (i, k). Let n. denote the total number of contact points at the current time. Each contact
point j of bodies 7 and k defines the origin of the contact frame ;. Let m; denote the contact
normal. The other two axes of frame C}, %j and o0;, span the contact tangent plane Further, let ¢; ;
denote the contact force acting on body ¢ through contact j and expressed in frame C';. The three
components of ¢; ; are denoted (¢; ;), (the normal component), (¢; ;) and (¢; ;). (the two tangential
components). Next, define W ; to be the (6 x 3) wrench matrix that transforms contact force ¢; ;
into the equivalent wrench (generalized force) in the frame B;. The wrench matrices contain all
geometric information relevant to contact j (definitions can be found in [24]).

Assuming that object ¢ is acted upon by an external generalized force vector g,;,; of length 6,
and a set of contact forces, the Newton-Euler equation governing the motion of object 7 is

E Wi icij+ Gobii + obji = Mobjid;; € R° (1)
JEB;

where B; is the index set of contact points that involve body ¢, hop;,; is the vector of velocity product
terms, g, is the generalized acceleration of object ¢, and M ;; is the mass matrix of object 1.
The Newton-Euler equations of all the objects can be combined and cast in matrix form as:

Wc, + Wiei + Woeo + gop; + hob; = Mobjq; € REmob; (2)



where the elements of the vector ¢,, € R"™¢, are the intensities of the normal wrenches at the contacts,
and W, is the matrix that transforms the normal wrenches to the appropriate body-fixed coordinate
frames. The vectors ¢; and ¢, and the matrices W; and W, are analogous. The vectors 9obi and hgp;
are the generalized external and velocity product forces, respectively. The generalized acceleration
of the passive bodies g and the block diagonal mass matrix M}; are composed of the acceleration
vectors and mass matrices of the individual passive bodies.

The development of the dynamic equations of the manipulator parallels that of equation (2). Let
ng be the number of joints in the manipulator and let T be the ngy-vector of joint efforts !. Summing
the effects of all the contacts on the manipulator yields:

T — JTcn+JTct‘|’JTco‘|‘ ‘|’hman :Mmané. € Rne 3
( n 13 0 9man )

where Jg, JtT, and J:;F map the wrench intensities into the joint axis directions.

2.2 Kinematic constraints

According to our convention, a contact point j uniquely determines the two bodies ¢ and &k that
touch at this point, and vice versa. Throughout the rest of the paper, we shall refer only to the
contact points and not to the bodies in contact; in particular, the pair (¢, ) which refers to body i
in contact with another body k& > 7 at contact point j is abbreviated as j (with ¢ omitted). We will
use the notation ja to mean contact point j along the direction a € {n,t, 0}.

At the current time, there are n, = ng + ns contacts, where ng and ng are the number of rolling
and sliding contacts, and R and S are the index sets corresponding to the rolling and sliding contacts,
respectively. Let v; = [vj, v v,]T and @; = [aj, aj; a;,]7, for j = 1,...,n., be the relative linear
velocity and acceleration vectors, expressed in frame C'; of bodies 7 and & at contact point j. Next,
partition v,,, vs, and v, and a,, a;, and a, into their n, ¢, and o component vectors, v, vs, v,,
a,, a;, and a,, each of length ny. The vectors v, and a,, for a € {n,t,0}, can be expressed in the

following convenient form: )
vo =WZLg—T,0, ac{n,tol,

aazwgij—Jaé—l—Wz(j—Jaé, a € {n,t,0}, (4)

By definition, the normal component of relative velocity at a contact must be zero and rolling
is indicated by both the t and o components being zero also. To prevent interpenetration, the
normal component of relative acceleration at must be nonnegative. If it is zero, the contact will be
maintained. Otherwise, the contact will break. Specifically, we have: j € R if v]zt + v]zo = 0 and
7 € S otherwise. The following equations and inequalities apply at the current time:

Un = (5)
vy =v, = 0, foralljeR (6)
a, > O. (7)

Notice that equations (5) and (6) constrain the initial conditions of the problem at the current time,
but inequality (7) is a constraint on the unknown accelerations of the bodies.

By “joint effort” we mean the force in the direction of motion of a prismatic joint or the moment in the direction
of motion of a revolute joint.



2.3 Friction constraints

The remaining constraints enforce certain friction laws. Two will be considered: first, Coulomb’s
Law which requires each contact force to lie within a quadratic cone, and second, an approximation
of Coulomb’s Law in which the quadratic cone at each rolling contact is replaced by a four-sided
pyramid.

2.3.1 Coulomb’s friction law

Coulomb’s Law stipulates that the j-th contact force ¢; lies within or on the boundary of its corre-
sponding friction cone represented as follows:

c?t + C?O < ,u?c?n, forj=1,...,n, (8)
where ; is the coefficient of friction at the j-th contact point. Since the contact forces must be

nontensile, we have:
cjn >0, forj=1,...,n. (9)

While a contact is sliding, the contact force must lie on the boundary of the friction cone with
its friction component directly opposite the relative sliding velocity:

[jCinVja + Cjar /v + v}, =0, fora=t,0andall j€S. (10)

While a contact is rolling, the contact force may have any direction and magnitude, provided it lies
in the cone defined by (8) and (9). However, since a rolling contact may convert to sliding, we have:

[ Cintjo + Cjar/a% + a3, =0, fora=t0andall jeR. (11)

Note that at an initially rolling contact, either the tangential acceleration components (a;¢,a;,) are
zero, indicating that the rolling persists, or the contact force (¢4, ¢;,) lies on the boundary of the
friction cone (i.e., (8) holds as an equation). In the latter case, the rolling contact begins to slide
and the friction force opposes the sliding motion.

Mathematically, the equation in (10) differs in one significant way from that in (11). Namely, the
former is linear in the unknowns, c;,, ¢;¢, and c;,, while the latter is not, because both a;; and a;,
are unknown. This observation motivates us to approximate the quadratic friction cones by polygons
(similar to related situations in deformable-body contact problems; see e.g. [13, 8, 10]); one such
approximation is the pyramid model described in the next subsection.

Three-Dimensional Multi-Rigid-Body Contact Problem with Coulomb Friction Law:
Given q, q, gopj, Robj, Mobj, 0, 0, T, G40 Pman, Mopan, and the W and J matrices, with q and

0 satisfying equations (5) and (6); determine q, 0, c,, ci, co, ay,, as, a, satisfying equations (2-4),
(7-11), and the complementarity condition:

(en)Ta, =0. (12)

The last equation (12) is the main contact condition. It enforces the fact that if a contact force
is compressive, then the relative acceleration of the bodies in the normal direction at that contact
must be zero (i.e., the contact is maintained). Similarly, if the normal component of the relative



acceleration at a contact is positive (i.e., the contact is breaking), then the normal component of the
contact force, must be zero; thus the entire contact force must be zero also, by (8).
A solution to the above problem naturally yields four possible types of contact transitions:

(i) rolling — rolling:
Cin>0  aj,=a;=a;,=0; forall j€R;

(ii) rolling — sliding:
¢in >0 a;,=0 a?t + a?o #0, forall jeR; (13)

Hjage ) Hiljo

cip = ————2__¢ Cip = ———2L__¢..;
Jt Jn Jo qns
2 2 2 2
V%t @ V%t @5
Cjn >0, aj,=0; forall jes;

for all j € R; (14)
(i) sliding — sliding:

(iv) rolling or sliding — breaking:

ajn >0 ¢,=0 (=¢r=c¢;,=0); forj=1,...,n.

2.4 The friction pyramid law

One reason for approximating the friction cone by a pyramid, thereby replacing the nonlinear con-
straints (8) and (11) by linear ones, is to facilitate the analysis and algorithmic development. Figure 1
shows a friction cone and its approximation as a four-sided friction pyramid. The interior and bound-
ary of the pyramid can be expressed as a system of linear inequalities:

HiCin — Cja > 0,  pjcin +¢jo >0, fora=1t,0andall j €R. (15)

Along with these friction constraints, we also replace the rolling contact conditions (11) by the
following conditions:

iCinia + Cjoltjo| =0, fora =t 0andall j € R. (16)
Three-Dimensional Multi-Rigid-Body Contact Problem with Friction Pyramid Law:
Same as the Coulomb law problem except that conditions (8) and (11) are replaced by (15) and (16).
Accordingly, the rolling-to-sliding contact interaction constraints (13) and (14) now become

(ii) rolling — sliding;:

¢in>0 a;, =0 a;#00Ra;,#0, forall jeR. (17)
Biajt . ]
. — ;a1 Cin ifaj;#0
€ [=pjcjn, pjcjn]  otherwise forall i e R 8)
or all j .
_Hi%e .. foas
Cjo = lajol Cin if jo ;é 0
€ [—1jCjn, pjcjn]  otherwise



Figure 1: Friction Cone and Pyramid

A deficiency with the friction pyramid law is that if the model predicts a given rolling contact
begins to slide (i.e., the solution of the model satisfies equation (17)), then according to equation (16),
the friction force will generally not exactly oppose the direction of sliding. Practically speaking, the
contact force always lies along one of the edges of the pyramid. Despite this deficiency, the friction
pyramid law has the important benefit of leading to a computationally simpler model. In addition,
other polyhedral approximations of the quadratic friction cone can also be used; all of which lead
to linear complementarity problems as opposed to the nonlinear complementarity problem obtained
from the quadratic model.

2.5 Variations of the model

The same techniques to be described below can be applied to two specific variations of the multi-
rigid-body contact model. First, the input, 7, and output, 0 can be interchanged. That is, one can
assume that the joint effort vector, 7, is unknown, while the joint acceleration vector, 0 is known.
More generally, let T, be the subset of the elements of T that are known and 75 denote the unknown
elements. The corresponding subsets of elements of é, 6., and é&, must be, respectively, unknown
and known. Second, the contact friction model can be extended to what is referred to as a “soft
finger” model [22]. This model assumes that in addition to three components of force, a contact can
also transmit a moment in the direction of the contact normal. More details of this extension can
be found in the paper [20].

There are two interesting variations that change the form of the basic model. The first is the
quasistatic, multi-rigid-body contact problem which is formed by setting the terms M ;g and
M an0 to zero. The quasistatic assumption fundamentally alters the model in ways discussed in
[21]. The other variation arises when relaxing the rigid body assumption. In this case, the unknown
contact forces are replaced by functions of the configuration and velocity of the system, which relate
forces to deformations; see [8, 9, 10, 11, 13].

3 Complementarity Formulations

The mixed nonlinear complementarity problem (mixed NCP) is defined as follows: given two func-
tions f and g from the (n 4 m)-dimensional Euclidean space into itself, find an (n 4+ m)-dimensional



vector (u,w) such that
u>0, f(u,v)>0, ulf(u,v)=0,

v unrestricted in sign, g(u,v)=0.

If m=0and f(z) =r+ Mz, where r is a given n-vector and M is a given n X n matrix, then this
problem becomes the standard linear complementarity problem, which we denote as LCP (r, M).
A comprehensive study of the latter problem is contained in the book [5]. In what follows, we show
that the contact problem with Coulomb friction can be formulated as a mixed NCP, whereas that
with pyramid friction can be formulated as an LCP.

Both formulations begin by eliminating the accelerations, g and é, as follows:

é = M;le [Wncn + Wtct + Woco + 9obj + hobj] (19)
0 = M [T - chn - J?ct - cho — Gman — hman] . (20)

Note that because M,p; and M., are positive definite and symmetric, their inverses exist. Sub-
stituting these expressions into equation (4) defining a,, we obtain

a; | =A| ¢ [+ | b (21)
a, c, b,

where the matrix A is symmetric positive semidefinite and given by

A'rm Ant Ano
A - Atn Att Ato = jTMj
Aon Aot Aoo

with the system inertia and constraint Jacobian matrices, M and 7, defined as follows:

“ My, 0 p w, W, W, 22)
L0 ML L Jroat Jt
and
b, ‘ .
. q dobi T Nobj
b | =57 T | +I™M ! T (23)
b -0 9man + hman - T

Next, we can solve the equations (10) for the friction force components, ¢;+ and ¢;,, to eliminate those
corresponding to the sliding contacts. Since there are no additional restrictions on the tangential
accelerations, aj; and a;,, for j € S, the equations in (21) that define these components can be
dropped from the model without affecting its solvability. Let the vectors as, and ax, be the
partitions of a,, corresponding to the sliding and rolling contacts respectively (i.e., the elements of



as, are aj, for j € S, and ag, is defined similarly). Next define as:, ar:, aso, @Ro, €sn, CRA, CSt5
CRts €S0, and ¢, analogously. Eliminating ¢s; and ¢s,, and removing the equations defining as;
and ag, result in:

aRn ~ CRn bRn
= A + (24)
aRy CRt br:
CLRO cRo bRO
where o )
(Ann)ss (Ann)sr (Apt)sr  (Ano)sr
3 (An)rs (Awm)rr (An)rrR  (Ano)rR
A= . (25)
(Am)rs (Am)rr  (Au)rr  (Aw)rr
(A, )rs (Ao)rr (Aw)rRR  (Auo)rR
Here L )
(Ann)ss (Ann)ss (Ant)ss (Ano)ss
(Ann)rs (Ann)Rrs (Ant)rs (Ano)rs
A = - VSt - VSO (26)
(Atn)rs (Atn)rs (Au)rs (Ato)rs
(Aon)rs (Aon)rs (Aot)rs (Aoo)rs

where Vs; and Vg, are, respectively, the diagonal matrices with diagonal entries given by

Bivit g iV

forall j€ S

and in general, for an N X N matrix M, if a and § are subsets of {1,..., N}, M,z denotes the
submatrix of M consisting of rows and columns indexed by a and 3 respectively.
3.1 Formulation with Coulomb friction law

To complete the formulation of the contact problem as a mixed NCP, we introduce a slack variable
s; to write (8) as an equation:

$; = pich, — i —c3, >0, jETR; (27)

we also rewrite (11) equivalently as: for j € R,

iCinlio +Ciad; =0, a=1t0
HjCin; Jjany (28)
/\J' >0, /\]‘8]' = 0.
Along with the following conditions on the normal components:
(@n,c,) >0, (an)lec, =0, (29)

we obtain the equivalent formulation of the three-dimensional multi-rigid-body contact problem with
Coulomb friction as the mixed NCP defined by equations (24), (27)-(29).



3.2 Formulation with friction pyramid law

The formulation of the three-dimensional multi-rigid-body contact problem with the friction pyramid

law is similar and is obtained by the introduction of four nonnegative slack variables, s}';, Sits 5}"0, and
s;,, at each rolling contact:
8T = Hicin + ¢t S5 = WiCin — Cjt
for all j € R. (30)

T = . — e .
8jo = MjCin + Cjo S50 = HjCin — Cjo

Letting ajca be the nonnegative and nonpositive part of the tangential contact acceleration a;, re-
spectively, we may write for a = ¢, 0,

gt -
tjo = a’, —a;

N -
T e and |aj,| =aj, +aj,.

The contact conditions (16) can be seen to be equivalent to the following complementarity relations:

(31)

We may solve for the variables cr; and ¢r, from the equations in (30) and substitute into equa-
tion (21); this yields

+,+

+ .+

= 55t = Sj0%50 = Sj0%0

[ asn ]| [ esn | [ bsn ]
aRy CRn brn
al, sk b
it | "M s || e @
SRt aRy 0
L SR, | Lag, 1 L 0 |
where
(Myn)ss (Mun)sr (Ant)sr (Ano)sk 0 0
(M.n)rs (Mun)rr (Ani)rRrR (Ano)rRR 0 0
_ (Min)rs (Miu)rr  (Au)rr  (Aw)rr I 0 (33)
(Mon)rs (Mon)rr (Aot)RR  (Aoo)rr 0 T
0 2Wr I 0 0 0
0 2Wr 0 I 0 0

10




with U being the diagonal matrix with diagonal entries u;, for 7 € R, and

(Myn)ss  (Mnn)sr

(Mon)rs (Mun)rr |

(Mu)rs  (Mu)rr |

| (Mon)rs  (Mon)rR

[ (Ann)ss  (Ann)sr (Ant)ss  (Ant)sr

(Ann)rs (Amn)rR (Ant)rs (Ant)rRR Vsi 0O
(Aw)rs (Awrr | | (Awlrs (Awrr l 0 UR]_
| (Aon)rs  (Aon)rR (As)rs (Aot)rR

[ (Ano)ss  (Ano)sr

(Ano)rs (Ano)rR Vs, 0

(Ato)rs  (Aw)rR l 0 UR]‘

| (As)rs  (Av)rR

The three-dimensional multi-rigid-body contact problem with pyramid friction is now equivalent to
the LCP defined by the equation (32) and the following conditions:

+ - o+ - e
Qpy ARy, ARy O s AR oy Crs SRy SRys SRos SR, 2 0 (34)

(an)'en = (af,)" (ck,) = (ag,)" (er,) = (a},)" (ck,) = (ag,) (ex,) = 0. (35)

4 Existence and Uniqueness of Solution

In this section, we present a main theorem which summarizes the solution existence and uniqueness
results for the contact problems. Let F be the subset of the Fuclidean space R3"c consisting of triples
(€n, €1, ¢,) satisfying the nonnegativity condition (9) and friction constraints: (8) for the cone model
and (15) for the pyramid model. Further let AV be the null space of the system Jacobian matrix J
(defined in equation (22)). Let Fr = FNN.

The following theorem contains three conclusions. The first conclusion refers to the case where
all contacts are initially rolling; i.e., S = (. In this case, the cone Fr and the body velocities ¢
and 6 play an important role in providing a sufficient condition for the existence of a solution. The
second and third conclusion allow sliding contacts but assume that J has full column rank. In this
case, a solution exists if the friction coefficients corresponding to the sliding contacts are “sufficiently
small”; furthermore such a solution is unique if in addition the friction coefficients corresponding to
the rolling contacts are also small.

Theorem 1 The following statements hold for the contact problems.

11



(a) If S =0 and if

. T Cn

q .

é j Cy Z 07 fOT (Z” (cnact7co) € FR) (36)
C,

then the contact problem with either the friction cone law or the friction pyramid law has a
solution.

(b) Suppose J has full column rank. There exists a positive scalar fi such that if p; € [0, n] for
all j € S, the three-dimensional multi-rigid-body contact problem with either Coulomb friction
cone law or the pyramid law has a solution.

(¢) Suppose J has full column rank. There exists a positive scalar i such that if p; € [0, ] for all
j=1,...,n., the solution in part (b) is unique.

The condition (36) is trivially satisfied when the columns of the system Jacobian matrix are
linearly independent, since then its null space becomes the origin. Thus, our existence condition
(when specialized to the planar case) is less restrictive than previous results obtained by Lotstedt[15]
and Baraff [2]. As noted in [19], when the constant vector, b, defined in equation (23), lies in the
column space of J7, then (36) must hold and the existence of a solution follows (assuming S = ().
In particular, for the assembly stability testing problem which has ¢ and 0 both equal to zero, a
solution exists.

Lotstedt [15] showed that the planar problem with both rolling and sliding contacts has a unique
solution if every matrix in a family of matrices (closely related to A defined in equation (25)) belongs
to the class of P-matrices. The second and third conclusion of Theorem 1 extend Lotstedt’s results
to the 3-dimensional case. In essence, the condition that the friction coefficients be small is needed
to ensure that A is a P-matrix. By an elementary linear algebraic argument, it is therefore possible
to derive an estimate for the largest upper bound for p; however, such an estimate is typically very
conservative and can be expected to be much smaller than one would expect to encounter in real
systems; see [19, Appendix I] for the derivation of such an estimate.

We note one important difference between the assumptions in (b) and (c). Namely, in (b)
only those friction coefficients at the sliding contacts are assumed small; whereas in (c), all friction
coefficients are assumed small.

Sketch of Theorem 1’s proof. The proof of statement (a) can be found in [19]. In the following
proof of (b), we will focus on the friction cone problem and give only the essential ideas. The omitted
details can be found in the technical report [23].

Since J has full column rank, the matrix A is symmetric positive definite. The matrix A, being
a modification of A involving the friction coefficients p;, 7 € S (see (25) and (26)), is positive definite
(but not symmetric), provided that these coefficients are sufficiently small. This implies that the
principal submatrix

(Ann )55 (Ann )SR

(Ann)RS (Ann)RR

is P. By LCP results [5], it follows that for each fixed but arbitrary pair (cr¢,cr,), there exists a
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unique pair (a,,c,) satisfying

[ as, ]_ (Aun)ss  (Ann)sr [ Csn ]4‘[ (Ani)sr  (Ano)sr ] [ CR¢ ]-I—[ bsy ]
(Ann)RS (Ann)RR bR'rL (37)

aARn
(anycn) >0 (an)Tcn = 0;

moreover (@, ¢, ) is Lipschitz continuous as a function of (cr¢, cr,). Let (an(crt, €ro), Cn(ere, CRO))
denote the unique solution function of the LCP (37). Also define

csn(CRrt, CRo)
(Am)rs (Awm)rr (Aw)rr  (Aw)rr crn(CRt, CRO) br:
F(crt,cro) = . + .
(Aon)rs (Ao)rRR (Aot)RR  (Aoo)RR CRy

CRo

bRo

Let N = 2|R|. The function F maps the Euclidean space RY, which contains the pair of vectors
(crt, CRo ), intoitself; F is a piecewise linear map, hence Lipschitz continuous; moreover, F' is strongly
monotone.

We define a set-valued map K : RN — RV as follows. For a given pair (cry,cr,) € RY, let the
set K(cRr¢,cr,) consist of all vectors (¢, ck,) € RY such that for all j € R,

(c)? 4+ (chy)? < i (cjnlert, ero))?

The pair (K, F) defines a quasi-variational inequality problem which is to find a pair of vec-
tors (ere,CRo) € RN with two properties: (a) (ere,cro) € K(ere,CRo); and (b) for all vectors
(C%tvc%o) € K(th7cRO)v

!
CRy — CRt

F(cri,ero)t [ >0

c;go —CRo
It is easy to show that if (¢ry, €r,) solves the QVI (K, F'), then

(aﬂrm Ena aRta a’Roa CRt, cRo)
solves the friction cone problem, where

[ a, ] _ [ a,(crt,CRro)

Cp

ary
and _ = F(cryt, CRro)-
aRo

Cn(th7 cRo)
The proof of (b) can now be completed by invoking an existence result [4] for the quasi-variational
inequality problem.

The proof of (c) is based on an extension of the argument given by Lotstedt for the planar case
[15]. We refer the reader to [23] for details. Q.E.D.

In general, solutions to the two contact models could be quite distinct. The next result, which
requires none of the assumptions in Theorem 1, gives a simple condition for a solution of the friction
pyramid model to be a solution of the cone model. The extent to which this observation can be put
to use will be investigated separately.
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Proposition 1 If a solution to the friction pyramid model satisfies the cone constraints (8), then it
must be a solution of the friction cone model.

At first glance, this result seems trivial. Nevertheless a closer look at the two models suggests
that they differ not only in the quadratic (8) versus polyhedral (15) friction constraints, but the
resulting contact conditions, (11) versus (16), are also different. A simple proof of Proposition 1 can
be found in [23].

5 Solution Methods for Friction Pyramid Model

The formulation of the friction pyramid model as the LCP defined by (32)—(35) permits the numerical
solution of this model by a host of algorithms as described in [5]. The main concern with the
application of these algorithms is whether their convergence criteria are satisfied by the data of
this particular LCP. In our study, we have focused on two algorithms: one classical and the other
contemporary. The former is Lemke’s almost complementarity pivot algorithm; the latter is a feasible
interior point algorithm.

We refer the reader to [5] for a comprehensive treatment of Lemke’s algorithm and its convergence
theory. The following is the main convergence result of this algorithm applied to the LCP in question.

Theorem 2 Suppose that the system Jacobian matriz J has full column rank. There exists a pos-
itive scalar fi such that if p; € [0, for all j = 1,...,n., Lemke’s algorithm, under a standard
nondegeneracy assumption, will in a finite number of pivots successfully compute a solution to the

LCP (32)-(35).

Proof. One can easily verify that the matrix M given by (33) is copositive. Moreover the constant
vector 7 in the equation (32) satisfies the following implication:

x>0
Mx >0 ; = rle > 0.
2T Mz =0
The desired conclusion now follows from a known LCP result [5, Theorem 4.4.13]. Q.E.D.

The family of interior point methods is a recent entry into the field of the LCP. Fueled by
their great success for solving linear programs, these methods have received much attention in the
mathematical programming literature. For this reason, we have chosen a feasible interior point (FIP)
method as a candidate algorithm for solving the LCP arising from the multi-rigid-body problem with
friction pyramids. As we shall see in the next section, the interior point method provides a viable
alternative to Lemke’s method.

Since the engineering community is probably not well acquainted with the interior point method,
we give a brief summary of the method in the Appendix. What follows is the main convergence
result of this method for solving the friction pyramid model.

Theorem 3 Suppose that the system Jacobian matriz, J has full column rank. There exists a
positive scalar fi such that if pu; € (0,1 for all j = 1,...,n., the feasible interior point method, as
described in the Appendiz and applied to the LCP defined by (32-35), generates a sequence of iterates

v v I./,:l: I./,:l: l/,:l: l/,:*: _
(an,cn,am s AR SRy ,SRO) , v=20,1,2,...,
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each of which is strictly feasible to this LCP (i.e., equation (32) is satisfied and the inequalities in
(34) are strictly satisfied) and

. vNT v _ 1: v, \T v,+ _ 1 v, \T v, _
}ggo(an) Cn = Ulljfolo(am) Srt = }ggo( Ro) SR, =0
Moreover, every accumulation point of the generated sequence solves the LCP; finally, this LCP must
have a solution.

Unlike Theorem 2 which permits zero coefficients of friction at the rolling contacts, the positivity
of the friction coefficients at the rolling contacts is essential for the validity of Theorem 3.

6 Numerical Results

In this section, we report our computational experience gained through applying Lemke’s algorithm
and our FIP algorithm (detailed in the Appendix) to some multi-rigid contact problems with friction
pyramid law. The algorithms were implemented in MATLAB (Lemke’s algorithm was provided by
Michael Ferris), while our data generation code was written in C. Both algorithms were run on
the same 328 data sets. These were generated by randomly generating 35 (physically meaningful)
problems of varying sizes with varying numbers of passive bodies, contact geometries, and initial
conditions. The dimensions of the corresponding M matrices in the LCPs ranged from 2 to 170.
Each problem was used to produce about 10 data sets by varying the coefficient of friction, which
for convenience, was assumed to be equal at all contact points. While the termination criterion for
Lemke’s algorithm was standard, our FIP algorithm was terminated if the total complementary gap
fell below 1076. We set upper limits of 100 and 300 iterations in Lemke’s and the FIP algorithms,
respectively.

Table 1 summarizes our numerical results. However, due to the large number of data sets, only
representative results are included in the table. The column headings in the table are defined as
follows: “size” is the dimension of the M matrix appearing in the LCP formulation, “# data sets” is
the number of data sets of a given size that were attempted, “frac. solved” is the fraction of the data
sets solved by either Lemke’s or our FIP algorithm (as indicated by the column headings), “ave. #
starts” is the average number of times Lemke’s algorithm was run (using new covering vectors) for
the data sets which it eventually solved, “ave. # iter.” is the average number of iterations required
for a solved data set. The latter number for Lemke’s algorithm includes the iterations performed
during failed runs on a given data set provided that it was eventually solved by Lemke’s algorithm
after a later restart. Overall, the two algorithms solved just under 70% (229 out of 328) of the data
sets. For the problems that were not solved, it is possible that they do not have solutions to begin
with.
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Lemke’s algorithm FIP algorithm

size # data sets | frac. solved ave. # restarts ave. # iter. | frac. solved ave. # iter.
2 20 1.00 1.0 2.0 0.50 8.4
10 60 0.92 1.3 8.9 0.35 10.4
16 10 1.00 1.4 20.0 1.00 17.2
30 26 0.62 1.7 44.1 0.42 19.6
50 20 0.35 2.0 107.4 0.30 61.1
90 23 0.00 - 0.35 30.4
120 10 0.10 1.0 < 100 0.70 < 300
150 6 0.00 - 0.50 46.3
170 10 0.00 - 0.00 -

Table 1: Summary of numerical results

Much more computational testing has been carried out and reported in [23].

7 Summary and Conclusions

In this paper, we have introduced various mathematical formulations for the three-dimensional multi-
rigid-body contact problem with Coulomb friction. Existence and uniqueness of a solution to two
models of the problem are presented under a full column rank assumption on the system Jacobian
matrix and a smallness assumption on the coefficients of friction. Two algorithms have been estab-
lished to compute a solution to the friction pyramid model under the same assumptions. Although
the required assumptions for the theoretical results are difficult to verify, the numerical results we
have obtained suggest that the algorithms are fairly effective for solving some randomly generated
three-dimensional multi-rigid-body contact problems under the friction pyramid law.

Our study is imperfect. Theoretically, the results are not strong enough to handle the case of
arbitrary friction coefficients and/or column rank deficiency of the system Jacobian matrix; numeri-
cally, we do not know if the two algorithms are capable of solving all friction pyramid problems which
possess solutions. In spite of these deficiencies, we believe that we have made an important con-
tribution toward the understanding of the three-dimensional multi-rigid-body contact problem with
Coulomb friction. Theoretically, we have provided the most comprehensive results for this problem.

There remains much more to be accomplished. Trying to improve the theoretical results is clearly
something worth looking into. The search for alternative algorithms for solving the friction pyramid
model would be equally useful. In this regard, the NE/SQP method [18] and the infeasible interior-
point method in [26] are possible candidates for solving the friction cone model.

Finally, there is practical side to this study. Our motivation was the hope that our results would
be useful in the design and development of two classes of systems: simulation systems and planning
systems. Both types of systems would be extremely useful: the former helping us to better understand
existing mechanical systems, and the latter enabling the automation of a plethora of contact tasks in
both hazardous and safe environments. The primary impediment to the achievement of our practical
objectives is the fact that the multi-rigid-body models discussed here do not always have unique
solutions, and the sufficient conditions that we have developed are conservative. What is needed are
algorithms to always and efficiently compute a solution if one exists, or determine that either no
solution or multiple solutions exist. If such algorithms were available, one could develop intelligent
strategies to deal with the nonuniqueness of the model in both simulation and planning applications.
We are currently studying these and related issues.
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8 Appendix: Some Details of The Interior Point Method

We present some details of an interior point method for solving the general LCP (r, M) satisfying
certain assumptions. We refer the reader to the monograph [12] for some background results and
detailed historical discussion of the family of interior point methods for solving the LCP.
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Consider an LCP (r, M) where the vector » € R" and matrix M € R™". Let
F={(w,z) ERY : w=7r+ Mz}
denote the feasible region of this problem. We write
Fy=FNRYy

where B3 = {(w,z) € R*™ : (w,z) > 0}. We postulate the following assumptions on the
pair (r, M):

(a) M is a Po-matrix;
(b) the LCP (v, M) is strictly feasible; that is, Fy # 0;

(c) for any scalars a > g > 0, the level set L(a,f) = {(w,z) € Fy : ae > woz > fe}is
bounded, where e denotes the n-vector of all ones and w o v denotes the Hadamard product of
two vectors w and v, that is, w o v is the vector whose ¢-th component is equal to u;v; for all 1.

Except for condition (c) which is a weakening of some standard assumptions for the family of
interior point methods for solving the LCP, the setting herein is the same as in [12]. The interior
point method for solving the LCP (7, M) satisfying the conditions (a), (b), and (c) starts at a
strictly feasible pair (w®, 2°) € F;. In general, given a pair of vectors (wk,zk) € F4, the method
consists of two major computational steps. Let 8 € [0,1) be a given scalar, called the centering
parameter. This parameter plays an extremely important role in the practical success of the interior
point method; we refer to [12] for a full discussion of this role. Let

We solve the following system of linear equations to compute the direction vector (dwk, dzk):

(38)

-I M dw” l 0 ]
zF wk dzF |

wk o 2F — Bipére

where W* = diag(w") and Z* = diag(z*). By the Py-property of M and the positivity of (w”, z¥),
it can be shown that the matrix on the left side of (38) is nonsingular; thus (dw", dz*) is well defined.
Next, we need to introduce the merit function for the method, which is defined as

Y(w,z) = (n+ () logw! z — > log wiz;, for (w,z) > 0,

=1

where ( is a positive constant. Again, we refer to [12] for the motivation and derivation of this
function. The vector (dw", dz") computed above turns out to be a descent direction for the function
¥ at the current iterate (w”,z*). Hence, a line search can be executed on this function starting
at this iterate and moving along the generated direction. This search is a standard routine in a
nonlinear programming algorithm. It requires two fixed constants, p,o € (0, 1), where p controls the
step size and o controls the decrease of .
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The following is a detailed description of the interior point method for solving the LCP (»r, M)
satisfying conditions (a), (b), and (c).

The interior point method

Step 0. (Initialization) Let e,0,p,m € (0,1) be given scalars. Let ¢ > 0, (w® 2% € F,, and
Bo € [0,1) be arbitrary. Set &k = 0.

Step 1. (Computing search direction) Solve the system of linear equations (38) to obtain (dw",dz").

Step 2. (Computing step size) Calculate

_ wk Sk
AL = min{l’{_dujf :dwfC < 0}7{_d;f :alzfC < 0}}

and let A, = nAg. Let my be the smallest nonnegative integer m such that

Plw + p" Ndw, 28 4 p" N d2E) — P(wh, 2F) < —o (1= BTN (39)
Set A\ = p™k AL
Step 3. (Update and termination check) Set A\ = p™* A}, and
(wht!, 251 = (wh + Apdw®, 2* + Aed2"),

If (wht!)T2*1 < ¢ terminate; the pair (w*+!, 2%*+1) is a desired approximate solution of the
LCP (r,M). Otherwise, choose fBi4+1 € [0, i]; replace k by k + 1 and return to Step 1.

We give some further explanation to Step 2. The scalar A is the largest step size A € (0, 1] for
which (w* 4+ Adw*, z¥ + A\dz") is nonnegative; thus by scaling Az by the factor 5 € (0,1), we are
ensured that (w® + Adw® | 2F + /\dzk) is positive for all A € [0, A}]. The integer my, can be determined
by starting with m = 0 and increasing m by 1 each time the inequality (39) fails to hold; it can be
shown that in a finite number of trials, the desired integer mj can be obtained.

The tolerance ¢ is used in practical implementation to check the successful termination of the
method. In theory, an infinite sequence of iterates {(w", z*)} is generated by the method. The
following result summarizes the main properties of this sequence and shows that the LCP (r, M)
must have a solution. Due to the weakened assumption (c), this result is not a direct consequence
of the theory in [12]; we refer the reader to [23] for details of the omitted proof.

Theorem 4 Under assumptions (a), (b), and (c), the above method generates a well-defined sequence
of iterates {(w", z¥)} having the following properties:

(Z) {(wkazk)} C ‘7:-}-;
(ii) {(wk, ")} is strictly decreasing;
(i) limp_ oo (W) 25 = 0;

(iv) every accumulation point of the sequence {(w*,2z*)}, if it exists, is a solution of the LCP

(r,M).

Moreover, the LCP (r, M) must have a solution.
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