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Abstract. Consider a system of bodies with multi-
ple concurrent contacts. The multi-rigid-body contact
problem is to predict the accelerations of the bodies
and the normal and friction loads acting at the con-
tacts. This paper presents theoretical results for the
multi-rigid-body contact problem under the assump-
tions that one or more contacts occur over locally pla-
nar, finite regions and friction forces are consistent
with the maximum work inequality. We present an
existence and uniqueness result for this problem un-
der some mild assumptions on the system inputs. The
application of our results to two examples is discussed.

1 Introduction

Multi-body dynamic systems are ubiquitous in our
society: motors, engines, and the automation devices
used to build portions of these machines are com-
mon examples. Where possible, machine designers
use joints that provide bilateral kinematic constraints
between the connected bodies (e.g., pin joints). In
some situations, however, design constraints dictate
the use of “joints” which provide only unilateral kine-
matic constraint (e.g., a cam and follower). In the
domain of automated manufacturing, robots are used
to position and orient parts for “presentation” to other
robots and automated devices for further processing.
Under normal operations, robots can position and ori-
ent only those parts that are light enough and small
enough to be grasped securely and lifted. However,
with a solid understanding of contact mechanics, a
robot can use pushing operations to reliably position
and orient objects that are too heavy to lift and too
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large to grasp securely [9].

Analyses of multi-body dynamic systems are typ-
ically based on the simplifying assumption that the
bodies are rigid. Then the Newton-Euler equations,
the kinematic equations and inequalities (arising from
the bilateral and unilateral constraints, respectively),
and a friction model for the contacts are used to formu-
late a governing system of differential-algebraic equa-
tions [4]. We note however, that formulation as a sys-
tem of equations requires prior knowledge of the im-
pending contact state (i.e., rolling, sliding, or break-
ing at each contact). Once formulated, the equations
will have a unique solution if the system Jacobian
matrix has full row rank. If there are “too many”
contacts, the contact forces cannot be uniquely deter-
mined through a rigid body model. One way to resolve
this indeterminacy is to incorporate a model of con-
tact compliance [14]. However, this “remedy” suffers
from its own set of problems. For example, the original
differential-algebraic system becomes a system of stiff
differential equations whose solution then depends on
the contact stiffnesses, which in turn, depend on the
global geometries of the parts in contact.

As alluded to above, the differential algebraic sys-
tem arising from the rigid body assumption cannot be
formulated at times when the impending contact state
is not known a priori. In simulation, the usual ap-
proach to predicting the ensuing contact state is to as-
sume it will be the same as the current one. Then after
solving the corresponding differential-algebraic sys-
tem, the solution is checked against a contact model.
If the normal force at a contact has become negative,
then the simulation is backed up to the time when
the component became zero and the system equations
are reformulated under the assumption that the cor-
responding contact has separated. Analogous logic is
applied to determine all other possible contact state
transitions.



The above approach clearly relies on force history
information, which is often absent for the first time
step in a simulation. It also depends implicitly upon
the assumption that the contact forces are continuous
functions of time. This is violated whenever a collision
occurs, since the contacts experience impulsive forces
at those times. Clearly one cannot base his assump-
tion of the contact state just after a collision on the
contact forces immediately before it. In this situation,
one would have to resort to other means to “guess” the
impending contact state. For example, one could test
all possible new contact states and choose one which
is consistent [7, 8]. However, there are two problems
with this approach. First, the number of possible con-
tact states grows exponentially with the number of
contacts, so enumeration becomes impractical quickly
as the number of contacts grows. Second, it is possi-
ble that no consistent contact mode exists (with finite
contact forces).

The difficulties described above suggest that it is
important to understand the multi-rigid-body contact
problem formulated without assuming prior knowl-
edge of the ensuing contact state. This philosophy
leads to the appearance of kinematic inequality con-
straints in the system model, and then naturally to
a complementarity problem combining the Newton-
Euler equations, the kinematic constraints, and a con-
tact friction model [6, 11, 12] in the unknown accel-
erations and contact forces. In this paper, we extend
previous results for systems having isolated point con-
tacts to those having one or more contacts distributed
over finite, locally planar areas [5]. The limit surface
formalism which is based on the maximum work in-
equality [3] is used to model the load-motion behavior
at the contacts. Here we would like to stress that the
small contact patches are used to allow the transmis-
sion of a friction moment along the contact normal.
This is not to say that rigid bodies in contact would
develop finite patches of contact. Rather, it is an ac-
knowledgement of the fact that bodies are not rigid,
and that the friction moments transmitted along the
contact normals can have a significant affect on their
motions.

The contribution of this paper is a set of new exis-
tence and uniqueness results that provide strict theo-
retical guidelines for the use of our model in the anal-
ysis of multi-rigid-body dynamic systems. This result
subsumes most previous results and generalizes them
to accommodate any friction law obeying the Maxi-
mum Work Principle [3].

2 The Model

The derivation of our mathematical model describ-
ing the motion of a system rigid bodies with lo-
cally planar, finite areas of contact is analogous to
the model with isolated points contacts developed
previously[12]. Due to space restrictions, we will only
discuss the aspects of the friction limit surface model.

The mathematical model describing the dynamic,
three-dimensional, multi-rigid-body contact problem
with point and distributed contacts consists of four
sets of equations and inequalities. In order to describe
the model, let n. denote the number of contacts at the
time instant for which the model is formulated (i.e.,
the current time). By definition, the normal compo-
nents of the relative linear velocities at these contacts,
Vin,% = 1,...,n,, are all zero; the two orthogonal com-
ponents of the relative linear velocity in the contact
tangent plane are denoted by (v, v;,) (see Figure 1).
The relative angular velocity component in the direc-
tion of the " contact normal is v;.. We assume that
a distributed contact forms as a result of compressive
normal loading between two contacting bodies; we are
not concerned with the geometry of contact region.
The modeling of this regions will be necessary in some
situations, but we do not consider that here.

Let us classify a contact ¢ as rolling if vy = vy =
vir = 0 and non-rolling otherwise. Let R and N de-
note, respectively, the sets of rolling and non-rolling
contacts; these two index sets partition {1,...,n.}.
Let M and J denote, respectively, the system iner-
tia and constraint Jacobian matrices; we note that the
former is a symmetric positive definite matrix whereas
the latter is defined by the contact geometry. Define

A=J"M17.

Letting ng and n, be the numbers of distributed and
point contacts, respectively, one can show that A is a
(3np + nq) x (3n, + ng) symmetric positive semidef-
inite matrix; its null space coincides with the null
space of J. In particular, A is positive definite if
and only if 7 has linearly independent columns. The
unknown vectors of relative accelerations and contact
forces and and moments are denoted by (ay, at, a,, a,)
and (en, ¢4, Co, ¢) respectively. Here each vector sub-
scripted by n, t, or o is of order n. and refers to the
normal or tangential components of the relative linear
accelerations or forces at the contacts. The vectors
subscripted by r are of order ny and represent the rel-
ative angular accelerations or transmitted moments
about the normals of the distributed contacts.
The basic model consists of the following:
(i) the combined kinematic/Newton-Euler equations



of motion,

an Cn bn
ay ci by
= A + ,
a, Co b,
a, Cr b,

where (by,, by, by, by) is a constant vector that contains
the known external forces applied to the system and
velocity product forces;

(ii) the nontensile restrictions on the contact forces,
the unilateral kinematic constraints, and the comple-
mentarity conditions on the normal contact forces and
accelerations,

(anacn) >0, (an)Tcn =0

(iii) the Coulomb friction limit surface condition sug-
gested by Howe and Cutkosky [5] (based upon a series
of contact friction experiments),
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where e;, €;0, and e;,. are given positive constants and
;i is the coefficient of friction (assumed positive); for
an arbitrary scalar A > 0, let
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(iv) the maximum work inequality: for each i € N,
(Cits Cio, Cir) €  argmax{—(vitCh; + VioChy + virch,)
(Cgtic;oicgr) € fi(uicin)}a
and for each i € R,
(City Cios Cir) €  argmax{—(aucl; + aioCiy + airch,) :
(cgt7cgoacgr) € fi(ﬂicin)h

where argmax{f(z) : z € X} denotes the set of opti-
mal solutions of the maximization problem:

maximize f(z) : z € X.

By introducing Lagrange multipliers and writing
down the Karush-Kuhn-Tucker optimality conditions
for the above maximation problems, condition (iv) can
be replaced by the following equivalent system of equa-
tions: for all i = 1,...,n.,
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where

(Vit, Vioy Vi) if i EN,
(ait, aio,air) ifi € R.

(0its Tio; Oir) = {
In order to handle other kinds of Coulomb fric-
tion laws, we introduce a generalized model in which
we replace the quadratic friction cone defined by
(1) by an abstract closed convex cone and modify
the maximum work inequality accordingly. Specif-
ically, for each i = 1,...,n., let F; : Ry — R®
be a set-valued map with the property that for each
scalar ¢ > 0, the image F;()\) is a closed convex
cone in the 3-dimensional Euclidean space R® and
that F;(0) = {0}. The latter property of F; stip-
ulates that at each contact, if the normal force is
zero, then so is the friction force and the transmit-
ted moment. In terms of these abstract friction maps
F;, the generalized dynamic multi-rigid-body prob-
lem with concurrent distributed frictional contacts is
to find contact forces (cin,cCit, Cio, Cir) and accelera-
tions (@in, ait, aio, air) satisfying conditions (i), (ii),
and (iv). (Note: (iv) implies that (ci, ¢;0, i) belongs
to Fi(picin)-)
Examples of F;()) include (a) the quadratic cone
defined by (1); (b) approximations of such a cone by
a convex polyhedron:

fl()‘) = {(citacioacir) S RS :
aijcit + BijCio + VijCir <A, F=1,...,m;},

where a;;,8;; and +y;; are some given scalars and m;
is a positive integer; and (c) mixtures of elliptic and
polyhedral friction constraints: e.g., F;()\) is given by

2 2
c: c?
{(Citacioacir) €R®: e%t + 22 <N e | < )\} .
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For planar problems, we can let
Fi(A) = {(cit,0,0) € R? : |ey| < A}

Examples (a) and (c) pertain to axi-symmetric friction
laws; whereas (b) do not necessary correspond to such
laws. Other axi-asymmetric friction laws can also be
modeled by using the friction map F;.

3 Existence/Uniqueness of Solutions
Employing a unified approach, we provide sufficient
conditions for the existence and uniqueness of solu-
tions to the basic model presented in the last section.
Similar results can be established for variations of this
model, such as those based on the abstract friction
maps F;. Due to space limitation, we will focus our



discussion on the basic model under the Coulomb fric-
tion limit surfaces.

Let F consist of all force tuples (¢, ¢t, €0, ¢r) such
that ¢, > 0 and for all 5 € NV,
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Let

Fg = F N null space of J.

The main result of this paper is summarized in the
following theorem.

Theorem 1 Let A = JT M1 T with M being sym-
metric positive definite.

(A) If A is positive definite, then there exists a scalar
friction bound i > 0 such that whenever u; €
[0, @] for all i € N, the rigid-body contact model
defined by conditions (i)—(iv) has a solution. If in
addition p; € [0, @] for alli € R, then the solution
18 unique.

(B) If N =0, and

T

bn Cnp Cn
bt Ct Ct
>0 forall € Fgp,
bo Co Co
bT Cr Cp

then for any positive {p; :i=1,...,n.}, the first

conclusion of (A) holds.

The conditions in the two statements (A) and (B)
of the theorem are different. The conditions in (A)
require the entire matrix A be positive definite and
the friction coefficients at the non-rolling contacts be
small; in this case if the friction coefficients at the
rolling contacts are also sufficiently small, then the
solution must be unique. A theoretical estimate for
the friction bound & can be computed as discussed
in [12]. Such an estimate tends to be very conserva-
tive and can be expected to be much smaller than one
would expect to encounter in real systems.

Part (B) pertains to the all-rolling case; in this case,
there is no condition imposed on the friction coeffi-
cients; also A is not required to be positive definite.
The proofs of Theorem 1 are straight forward exten-
sions of those in the papers [10, 12]; background results
needed in the proofs are in [1, 2].

4 Examples

Two example problems were formulated and solved
for various parameter values. These problems are
based on the system depicted in Figure 2. There are
two moveable bodies initially at rest: a uniform cube
of side 2 with six (passive) degrees of freedom and a
rod with two (active) degrees of freedom and a sec-
ond rod fixed in space. The active rod can translate
along and rotate about its axis, which is parallel to
the z-axis of the inertial frame. We also assume that
the rod’s actuators can apply a force 73 and moment
79 along the rod. The cube contacts the environment
at three locally planar, distributed contacts: first, the
front face of the cube contacts the active rod, second,
the bottom face contacts a fixed, slightly curved, con-
vex surface, and third, the right vertical face contacts
the fixed rod. These examples can be viewed as a
robot manipulating a box in contact with the floor.
4.1 Example 1

In the first example, the third contact (with the
fixed rod), is assumed to be absent; initially, there are
two contacts. The contact between the cube and the
active rod is at the position (7, {) on the front face, and
the contact between the hump and the bottom face
of the cube is at the face’s geometric center (directly
below the center of gravity). The simple geometry
and initial conditions were chosen so that the solutions
obtained could be easily checked against our intuition.
For example, if the rod does not push against the cube
(i.e., 1 <0), then the cube will not accelerate.

Since the system has eight degrees of freedom and
there are four unknown contact force components at
each contact, the system Jacobian matrix! J is 8 x 8
and given by:

-1 0 0 0 0 -1 0 0
o 0 1 1 0 0 0 0

o 1 0 0 -1 0 0 0

0 0 —¢+1 1 —p+1 0 -1 0
—~<¢+10 0 0 1 1 0 0
n-1 0 1 0 0 0 0 1
1 0 0 0 0 0 0 O
| o o o 0 0 0 1 0]

where the columns (in order from left to right) corre-
spond to contact forces in the 7y, Ra, &1, to, 61, and
0, directions, and contact moments in the 1y, and 7
directions. The last two rows of the matrix are the
manipulator Jacobian (of the movable rod).

It can be shown that the determinant of J is given
by —(. Geometrically, this means that as long as the

I This Jacobian is expressed in the coordinate frame with the
same orientation as the inertial frame, but with its origin at the
center of mass of the cube.



contact between the rod and the cube is not along
the cube’s bottom edge (of the front face), the system
Jacobian will be nonsingular and the matrix A will be
positive definite.

The nonlinear complementarity problem corre-
sponding to the rod-cube system was formulated fol-
lowing the approach laid out in [12] and this pa-
per. We assumed that the system mass matrix was
dia‘g(151713373537432)7 et = e = 1 Vi, e, = 1,
ez =0.25, 71 =5, 5 = 3, and n = 1.5 The value of ¢
and the coeflicients of friction were varied to generate
data satisfying the two parts of Theorem 1. Solutions
were determined using an interior point algorithm de-
veloped by Wang, Monteiro, and Pang [13], and imple-
mented as a script file (an M-file) in Matlab installed
on a 486/40 IBM compatible pc. On average, the al-
gorithm found a solution for a given data set in about
2 seconds. Since script files are “interpreted” by Mat-
lab, it would not be difficult to reduce the solution
time by a factor of 100 with careful coding.

Four hundred data sets were generated using the
numbers given above, setting ( = 2, while p; and s
was varied (each in 20 steps) over the range [0.1,1.0].
Thus, for all of these data sets, the system Jacobian
was full rank. Since the contacts were initially rolling,
part (A) of Theorem 1 implies that a solution exists for
any values of the coefficients of friction. The algorithm
converged to a valid solution for every pair of friction
coefficients, and the solution was used to compute the
magnitude of the tangential acceleration of contact 2
(under the cube). This acceleration is plotted against
the coefficients of friction in Figure 3. Notice that the
solutions appeal to our intuition; when the coefficient
of friction at contact 2 is small, sliding initiates.

Figure 3 shows the magnitude of the tangential ac-
celeration of contact 2 when contact 1 (between the
rod and cube) was moved down to the bottom edge of
the front face, i.e., ( = 0. All other data values were
retained. With the rod contact in this position, the
system Jacobian matrix was singular. However, be-
cause the contacts were initially rolling and the bodies
began at rest, one can show that part (B) of Theorem 1
would be satisfied for any values of the friction coef-
ficients. Again, a solution was found for every pair
of friction coefficients, and those solutions were intu-
itively appealing.

4.2 Example 2

Because the geometry of the first example was so
simple, the contact with the hump was moved to the
extreme back, left corner of the bottom face, and a
third contact was made with the fixed rod on the right
face of the cube. This led to the (8 x 12) system Ja-
cobian matrix J in display (2): the first 3 columns of

J correspond to forces in the n directions, the second
three to the ¢ directions and so on; and the last 2 rows
are again the Jacobian of the movable rod.

In studying this problem, we searched for multiple
qualitatively distinct solutions for a single data set. In
other words, given the initial conditions, input torque
and force, etc., we searched for problem solutions with
different final contact states. To find such solutions,
each of several data sets was solved several times us-
ing different controlling parameters and initial iterates
in the Wang-Monteiro-Pang algorithm. We also sys-
tematically varied the coefficient of friction at the con-
tacts, because complementarity theory suggests that
multiple solutions are more likely as the coeflicient
of friction increases. Multiple solutions were found
for several data sets with large coefficients of friction
(near 1.0). The first data set we found with multiple
solutions is as follows: M = diag(1,1,1,3,3,3,4,2),
Hi = 0.9 Vl, €it = €jp = 1 Vl, Eir = 2.0 VZ, = 6,
=3, n=(=+v=1.5,and 6§ = 0.5. The bodies
were initially at rest, and thus all contacts were con-
sidered to be initially rolling. The two solutions found
are shown in Table 1.

21 0 o0 0 0 o0
o 0 -1 1 1 0
0 1 0 0 0 -1
0 -1 4-1 —¢c+1 1 -1
T=| _¢c41 1 0 0 0 1-6
n—1 0 6—-1 1 -1 0
10 0 0 0 o0
0 0 o0 0 0 0
0 -1 1 0 0 0]
0O 0 0 0 0 0
1 0 0 0 0 0
p41 0 0 -10 0
1 1 ~v-1 0 0 -1 (2)
0 -1 -1 0 1 0
0O 0 0 0 0 0
0 0 0 1 0 0

Table 1 is organized as follows. The left-hand col-
umn contains the names of the unknowns. Above the
triple horizontal lines dividing the Table are the values
of the variables which have one element per contact
point. Below are the values of the accelerations of the
bodies. The acceleration vector ¢ is partitioned into
linear and angular acceleration subvectors, gy;,q,, and
Qangulars respectively.

From the two solutions displayed in Table 1, one
may infer that the block and rod system may jam
(Solution 1) or move with all contacts sliding (Solu-
tion 2). Note that jamming (in the first solution) is
indicted by the fact that § = 8 = 0. The jamming



interpretation is further corroborated by all compo-
nents of the contact accelerations being zero and the
positive values of the variable “slack.” This variable is
simply the difference between the left- and right-hand
sides of equation (1). It is not a variable of the model
per se, rather it is a useful indicator of whether or not
a given contact force is on the boundary of its friction
cone. For the jammed case, the slacks are all posi-
tive, indicating that the contact forces are inside their
friction cones, and hence the contacts are sticking.

The second solution implies sliding at all contacts.
Notice that a,, = 0, which means that the contacts
are maintained. The difference in the character of this
solution is evident in the elements of “slack” and the
acceleration values. Since the values of “slack” are all
zero, every contact could begin to slide (Coulomb’s
Law is ambiguous on this point). However, sliding is
clearly indicated by the nonzero values of the contact
acceleration vectors, a;, a,, and a,.

5 Conclusion

We have formulated the dynamic equations of a
general, spatial, multi-rigid-body system with multi-
ple distributed contacts as a complementarity prob-
lem, and provided two sufficient conditions for solution
existence and uniqueness. The first condition guaran-
teeing solution existence requires linear independence
of the columns of the system Jacobian and constrains
the maximum coefficient of friction at the non-rolling
contacts. If the coefficients of friction at the rolling
contacts are also small, then the solution is unique.
The second condition guaranteeing existence pertains
to problems in which all contacts are initially rolling
(without twisting). It is important to note that this
condition does not restrict the coefficients of friction.

The ultimate goal of this work is to develop effi-
cient algorithms for solving the multi-rigid-body con-
tact problem. Enumerative algorithms exist for solv-
ing for general complementarity problems that include
our formulation as a special case, but we anticipate
that these algorithms will not be able to compete with
algorithms specialized to our problem. In animation
applications, a specialized algorithm is likely to per-
form even better, if we exploit solution coherence over
time (to allow “hot starts”).

Solution 1: Jamming
unknowns || contact 1 contact 2 contact 3
Cn 6 4.2039 3.9117
Cy 1.5767 2.3350 -1.6069
Co -4.1892 -2.9716 3.0284
Cr 3 -0.2292 0.6971
slack 6.8 0.019 0.52
an 0 0 0
a; 0 0 0
a, 0 0 0
ar 0 0 0
ijlinear 0 0 0
qangular 0 0 0
6 0 0
Solution 2: Sliding
unknowns || contact 1 contact 2 contact 3
Cn 5.6399 4.1562 1.7016
Ct -0.8763 2.2585 -0.6783
Co -4.8224 -2.9756 1.3717
Cr 2.6394 -0.3840 -0.1196
slack 0 0 0
an 0 0 0
ag 0.0815 -0.9582 0.7526
Qo 0.4483 1.2624 -1.5219
ar -0.2454 0.1629 0.1327
Qlinear -1.2926 -0.3194 -0.3431
Qangular -0.4759 -0.1327 0.1629
(7] 1.4404 0.7212

Table 1: For a single data set, the multi-rigid-body
contact problem can have multiple solutions. For the
problem described in Exzample 2, at least two qualita-
tively different solutions exist when the coefficient of
friction is taken to be 0.9 at oll contacts: jamming and
sliding.

There remain a number of open questions. We have
not yet determined an efficient procedure for deter-
mining the friction bound, . More generally, an al-
gorithm to determine solution uniqueness is desirable
(in some situations) as a means for delineating the
domain of applicability of the multi-rigid-body model.
Last, there is a need to develop existence and unique-
ness conditions for general situations characterized by
a system Jacobian without full column rank.
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