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Abstract. Consider a system of bodies with
multiple concurrent contacts. The multi-rigid-
body contact problem is to predict the acceler-
ations of the bodies and the normal and fric-
tion loads acting at the contacts. This paper
presents theoretical results for the multi-rigid-
body contact problem under the assumptions
that one or more contacts occur over locally
planar, finite regions and friction forces are con-
sistent with the maximum work inequality. We
present an existence and uniqueness result for
this problem under some mild assumptions on
the system inputs.
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1 Introduction

Multi-body dynamic systems are ubiquitous in
our society: motors, engines, and the automa-
tion devices used to build portions of these
machines are common examples. Where pos-
sible, machine designers use joints that pro-
vide bilateral kinematic constaints between the
connected bodies (e.g., pin joints). In some
situations, however, design constraints dictate
the use of “joints” which provide only unilat-
eral kinematic constraint (e.g., a cam and fol-
lower). In the domain of automated manufac-
turing, robots are used to position and orient
parts for “presentation” to other robots and au-
tomated devices for further processing. Under
normal operations, robots can position and ori-
ent only those parts that are light enough and
small enough to be grasped securely and lifted.



However, with a solid understanding of contact
mechanics, a robot can use pushing operations
to reliably position and orient objects that are
too heavy to lift and too large to grasp securely
[7].

Dynamic analyses of rigid body systems are
based on the Newton-Euler equations, the kine-
matic constraints, and a friction model of the
contacts. These equations and inequalities are
typically formulated as a system of differential-
algebraic equations [4]. However, their formu-
lation as a system of equations requires prior
knowledge of the impending contact states (i.e.,
rolling, sliding, or breaking). Once formu-
lated, the equations will have a unique solu-
tion if the system Jacobian matrix has full row
rank. If there are “too many” contacts, the
contact forces cannot be uniquely determined
with a rigid body model. One way to resolve
this indeterminacy is to incorporate a model
of contact compliance [11]. However, we warn
the reader that this “remedy” suffers from its
own set of problems. For example, the origi-
nal differential-algebraic system becomes a sys-
tem of stiff differential equations whose solution
then depends on the contact stiffnesses, which,
in turn, depend on the global geometries of the
parts in contact.

As alluded to above, the differential alge-
braic system arrising from the rigid body as-
sumption cannot be formulated at times when
the impending contact state is not known a pri-
ori. In simulation, the usual approach to pre-
dicting the ensuing contact state is to assume it
will be the same as the current one. Then after
solving the corresponding differential-algebraic
system, the solution is checked against a contact
model. If the normal force at a contact has be-
come negative, then the simulation is backed up
to the time when the component became zero
and the system equations are reformulationed
under the assumption that the corresponding
contact has separated. Analogous logic is ap-
plied to determine all other possible contact
state transitions.

The above approach clearly relies on force

history information, which of course, is often
absent for the first time step in a simulation.
It also depends implicitly upon the assumption
that the contact forces are continuous functions
of time. This is violated whenever a collision
occurs, since the contacts experience impulsive
forces at those times. Clearly one cannot base
his assumption of the contact state just after a
collision on the contact forces immediately be-
fore it. In this situation, one would have to
resort to other means to “guess” the impend-
ing contact state. For example, one could test
all possible new contact states and choose one
which is consistent. In problems with small
numbers of contacts, it is practical to enumer-
ate all possible contact states until a consistent
solution is found. However, since the number
of possible contact states grows exponentially
with the number of contacts, this approach is
limited by computing speed and algorithm effi-
ciency.

The difficulties described above suggest that
it is important to understand the multi-rigid-
body contact problem formulated without as-
suming prior knowledge of the ensuing contact
states. This philosophy leads to the appear-
ance of kinematic inequality constraints in the
system model, and then naturally to a com-
plementarity problem combining the Newton-
Euler equations, the kinematic constraints, and
a contact friction model [6, 9, 10] in the un-
known accelerations and contact forces. In this
paper, we extend previous results for systems
having isolated point contacts to those having
one or more contacts distributed over locally
planar, finite areas [5]. The limit surface for-
malism developed by Goyal is used to model
the load-motion behavior at the contacts [3].

The contribution of this paper is a set of
new existence and uniqueness results, that pro-
vide strict theoretical guidelines for the use of
our model in the analysis of multi-rigid-body
dynamic systems.



2 The Model

The derivation of our mathematical model de-
scribing the motion of a system rigid bodies
with locally planar, finite areas of contact is
analogous to the model with isolated points
contacts developed previously[10]. Therefore,
in this paper, we will only detail the aspects of
the friction limit surface model.

The mathematical model describing the
dynamic, three-dimensional, multi-rigid-body
contact problem with point and distributed
contacts consists of four sets of equations and
inequalities. In order to describe the model, let
n. denote the number of contacts at the time
instant (i.e., the current time) for which the
model is formulated. By definition, the nor-
mal components of the relative linear velocity
at these contacts, v;,,7 = 1,...,n., are all zero;
the two orthogonal components of the relative
linear velocity in the contact tangent plane are
denoted by (v, vi0). The relative angular veloc-
ity component in the direction of the i contact
normal is v;. We assume that a distributed
contact forms as a result of compressive nor-
mal loading between two contacting bodies; we
are not concerned with the geometry of the dis-
tributed contacts, their relative angular veloc-
ities and accelerations, nor the components of
the contact moments in the tangent planes of
the contacts. The modeling of these details will
be necessary in some situations, but we do not
consider them here.

Let us classify a contact ¢ as rolling if vy; =
Vio = Vi = 0 and non-rolling otherwise. Let
R and N denote, respectively, the set of rolling
and non-rolling contacts; these two index sets
partition {1,...,n.}. Let M and J denote,
respectively, the system inertia and constraint
Jacobian matrices; we note that the former is a
symmetric positive definite matrix whereas the
latter is defined by the contact geometry. Let

A=JT"MJ.

Letting ng4 and n, be the numbers of distributed
and point contacts, respectively, one can show

that A is a (3n. + ng) X (3n. + ng) symmetric
positive semidefinite matrix; its null space co-
incides with the null space of J. In particular,
A is positive definite if and only if J has lin-
early independent columns. The unknown vec-
tors of relative accelerations and contact forces
and and moments are denoted by (ay,, a, a,, a,)
and (¢, ¢, ¢, ¢;) Tespectively. Here each vector
subscripted by n, t, or o is of order n. and refers
to the normal or tangential components of the
relative linear accelerations or forces at the con-
tacts. The vectors subscripted by r are of order
ng and represent the relative angular accelera-
tions or transmitted moments about normals of
the distributed contacts.

The four sets of defining equations and in-
equalities of the basic model are:

(i) the combined kinematic/Newton-Euler
equations of motion,
ag Ct by
= A -+ ,
aO CO bO
a, Ccr b,

where (b, by, b,,b,) is a constant vector that
contains the known external forces applied to
the system and velocity product forces;

(ii) the nontensile restrictions on the contact
forces, unilateral kinematic constraints, and the
complementarity conditions on the normal con-
tact forces and accelerations,

(an; Cn) > 0: (an)TCn - 0:

(iii) the Coulomb friction limit surface condi-
tion suggested by Howe and Cutkosky [5],

2 2 2
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where e;,e;,, and e; are given positive con-
stants and p; is the coefficient of friction (as-
sumed positive); and



(iv) the maximum work inequality: for each i €
N,

(Cits Cio, Cir) € argmax
/ / / .
_(vitcit + VioChp T vircw) :
2 , 2 , 2 ,
4 Y < 2 2
(eit) + (eio) + (ew) S i Cin
and for each 7 € R,
(Cit7 Cios c’ir) < argmax
! / / .
_(aitcz’t + QioCyy + ai?"cir) :
2 N2 )
“ Sio Cir 2.9
(eit) + ( + e; S Hi Cin,

€io0 ir
where argmax { f(z) : # € X} denotes the set of
optimal solutions of the maximization problem:

b

maximize f(z)

subject to z € X.

Equivalently, the maximum work inequality can
be formulated as the following equations:

2 e O 2 2 2 ;2 2 2 .
€itHiCinTit + \/eitait + €50050 + €505 cit = 0

2 5 2 2 9 . 2 2 . _
€ioliCinTio + \/eitait + €500 + €505 Cio = 0

2 2 9 . 2 2 2 2 . _
€irHiCinTir + \/eitait + €405 + €505y Cir = 0

Vi=1,...,n

where

(Vit, Vig, viy) i i €N,
(ait, Gi, aiy) ifi € R.

(Uitaaimair) = {

In order to be able to handle other kinds of
Coulomb friction laws, we introduce a general-
ized model in which we replace the quadratic
friction cone defined by (1) by an abstract
closed convex cone and modify the maximum
work inequality accordingly. Specifically, for
each i = 1,...,n., let F; : R, — R® be a
set-valued map with the property that for each
scalar 7 > 0, the image F;(7) is a closed convex
cone in the 3-dimensional Euclidean space R3
and that F;(0) = {0}. The latter property of
F; stipulates that at each contact, if the normal

force is zero, then so is the friction force and the
transmitted moment.

Consider the following generalized friction
conditions:

(iii)" for each i = 1,...
Fi(picin);

(iv)" the maximum work inequality: for each

ieN,

Mey (Cit, Cioy Cir) €

(City Cioy Ci) € argmax{— (v Cs, + ViCry + VirChy)

(c;w c;m c;r) S E(Mzcm)};
and for each 1 € R,

(Cit7 Cios Cz’r) € argmax{ - (aitcgt + aiocgo + iy c;r) :

(Cgﬂ 6207 C;r) € E(Mlcl")}

The generalized dynamic multi-rigid-body
problem with concurrent distributed frictional
contacts is to find contact forces (¢, Cit, Cio, Cir)
and accelerations (ain, @i, G0, a;y) satisfying
conditions (i), (ii), (iii)’, and (iv)'.

Examples of F;(7) include (a) the quadratic
cone (1):

Fi(r) = {(Citacio;cir) €R:

2 2 2
c c c
Galesorl,

€it  Cio ir

where e;;, e;,, and e; are some given positive
scalars; (b) approximations of such a cone by a
convex polyhedron:

Fi(r)

{ (Cits Cioy Cir) € R®
jCit + BijCio + VijCir < T,
jzl,...,mi},
where «;;, (;; and v;; are some given scalars and
m; is a positive integer; and (c¢) mixtures of el-
liptic and polyhedral friction constraints: e.g.,
F(r) = { (o) e B

2 2
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_22t+%s7_27|cir| ST}

€t

70



For planar problems, we can let

Fi(r) = {(c,0,0) € R? : |cy| < 7).
Examples (a) and (c¢) pertain to axi-symmetric
friction laws; whereas (b) do not necessary cor-
respond to such laws. Other axi-asymmetric
friction laws can also be modeled by using the
friction map F;.

3 Existence and Unique-
ness of Solutions

Employing a unified approach, we provide suf-
ficient conditions for the existence and unique-
ness of solutions to the basic model presented
in the last section. Similar results can be es-
tablished for variations of this model, such as
those based on the abstract friction maps F;.
Due to space limitation, we will focus our dis-
cussion on the basic model under the Coulomb
friction limit surfaces.

Let F consist of all force tuples (¢, ¢, ¢, ¢;)
such that ¢, > 0,

zt:ulcmv%t + \/ tvzt + ew w + ezr 17" Cit = 0

zo:uZCZTLUZO + \/ ztvzt + ezovzo + ezr 17’ Cio = 0

1TM10WU" + \/ tvzt w w + ezr ’LT‘ Cir =0
Vie N,
and
¢ &
e—zft‘+—+ <pid, VieR.
Let

F7 = F N null space of J.

The main result of this paper is summarized
in the following theorem.

Theorem 1 Let A = J'MJT with M being
symmetric positive definite.

(A) If A is positive definite, then there exists
a scalar p > 0 such that whenever u; €
0, i) for all i € N, there exist

(an;at;ao;ar) and (Cn,Ct,CO,CT)

solving the rigid-body contact model de-
fined by conditions (i)-(iv). If in addition
w; € [0, @] for alli € R, then the solution
18 UNLQUeE.

(B) If N =10, and

T

by, Cn Cn,
bt Ct t
>0 for all e Fo,
bo Co Co
b, Cy C

then for any positive {p; : i =1,...,n.},

the first conclusion of (A) holds.

The conditions in the two statements (A)
and (B) are different. The conditions in (A) re-
quire the entire matrix A be positive definite
and the friction coefficients at the non-rolling
contacts be small; in this case if the friction
coefficients at the rolling contacts are also suffi-
ciently small, then the solution must be unique.
Part (B) pertains to the all-rolling case; in this
case, there is no condition imposed on the fric-
tion coefficients; also A is not required to be
positive definite. The proofs of Theorem 1 is a
simple extension of those in the papers [8, 10];
background results needed in the proofs are in
2, 1].

4 Conclusion

We have formulated the dynamic equations of
a general, spatial, multi-rigid-body system with
multiple distributed contacts as a complemen-
tarity problem. The condition guaranteeing ex-
istence of solution constrains both the maxi-
mum coefficient of friction at the non-rolling
contacts and the linear independence of the



kinematic constraints associated with the con-
tact geometry. If the coefficients of friction at
the rolling contacts are also small, then the so-
lution is unique. The second condition guaran-
teeing existence pertains to problems in which
all contacts are initially rolling (without twist-
ing). We emphasize that this condition does
not restrict the coefficients of friction.

The ultimate goal of this work is to develop
efficient algorithms for formulating and solving
the complementarity multi-rigid-body contact
problem. Algorithms exist for solving for gen-
eral complementarity problems that include our
formulation as a special case, but we anticipate
that these algorithms will not be able to com-
pete with one specialized to our problem. In
animation applications, a specialized algorithm
should be able to perform even better, if we ex-
ploit solution coherence over time. However, we
must also keep in mind that the model devel-
oped here does not always have a unique solu-
tion and approaches must be developed to find
all solutions, particularly when force history in-
formation is does not exist (in the first time
step of integration) or is not useful (the first
time step after an impulsive force occurs).
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