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Abstract

Robotic hands or arms that are capable of envelop-
ing the workpieces that they manipulate hold several
advantages over mechanism that cannot. One impor-
tant advantage is that envelopment of the workpiece
ensures grasp maintenance even if the object experi-
ences significant external forces in directions unknown
prior to grasp synthesis. 'This makes enveloping mech-
anism useful in low-friction and microgravity environ-
ments. In this paper we define first-order stability
cells which were used to plan a planar, “whole-arm,”
manipulation task of a slippery workpiece. For most,
but not all, of the plan, the workpiece was enveloped.
Experimental results are presented.

1 Introduction

Robotic manipulation systems (e.g., hands and
multi-arm systems) that are capable of enveloping the
workpieces that they manipulate can execute “power
grasps” from which the workpiece cannot be removed
without displacing, perhaps even bending, the mech-
anism’s links. This type of grasp is particularly use-
ful when manipulation takes place in low friction or
microgravity environments. Envelopment, however,
requires at least n, + 1 contacts between the work-
piece and manipulation system, where n, is the num-
ber of degrees of freedom of the uncontacted work-
piece. Thus envelopment using only finger tips is im-
practical. Instead, all surfaces of all of the links of
the manipulator system should be used [10]. This
concept is referred to as “whole-arm” manipulation
[9]. When not restricting contacts to be on the fin-
ger tips, manipulation of an enveloped workpiece can
be achieved by systems with small numbers of links
and actuators, thereby reducing the mass and com-
plexity of the mechanism. This reduced complexity
results in lost dexterity which must be recaptured (to
the extent possible) by allowing contact sliding. How-
ever, there have been relatively few studies addressing
the issues raised by allowing contacts on any surface
of any link and still fewer which also address issues
associated with sliding.

In this paper, we consider the quasistatic, “whole-
arm,” dexterous manipulation of slippery workpieces.
Task planning is achieved by cell decomposition of
the system’s configuration space, or C-space, first into
contact formation cells, or CF-cells, from which first-
order stability cells, or FS-cells, are generated. CF-
cells are patches of “contact space” used to delineate
the boundaries between “free space” and “obstacle
space.” We introduce FS-cells, which are the physi-
cal counter parts of CF-cells. Their use in planning
ensures that all plans found satisfy the applicable ge-
ometric restrictions and physical constraints. A sim-
ple, planar, manipulator system with two actively con-
trolled links was constructed to execute whole-arm,
dexterous manipulation plans. Experimental results
of a plan consisting of enveloping and nonenveloping
manipulation segments are presented.

1.1 Related Work

The work reported on here is unique in that a work-
piece was reoriented within a mechanical articulated
hand using the surfaces of the fingers and palm. The
object was slippery with an effective coefficient of fric-
tion approximately equal to 0.1. If the coefficient had
been larger than 0.15, the plan would have failed due
to jamming.

There are several closely related research efforts
that have played a role in motivating this work. In
particular, both Fearing [3] and Brock [1] realized the
importance of sliding in the enhancement of dexter-
ity. While contacts were restricted to the finger tips,
they used the Salisbury Hand to perform manipula-
tion tasks with sliding. Other closely related work
has been done by Mason [7], Peshkin [8], and Lynch
[6] on the motion of a workpiece sliding in a horizon-
tal plane with single and multiple points of contact
and an unknown externally applied wrench. Relevant
research has been reported in the mechanisms litera-
ture in the area of closed-loop serial linkages, but few
models treat contact friction and the quasistatic case
considered here.



2 Problem Statement

Given the initial and goal configurations of a ma-
nipulator system and a workpiece (see Figure 1), dex-
terous manipulation planning is the act of determin-
ing joint angle and joint effort trajectories which, if
executed, would effect the desired change of configu-
ration. In studying this problem, we have made the
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Figure 1: Initial and goal configurations.

following assumptions: each body in the system is a
rigid polyhedron; dynamic effects are negligible; the
geometry of each body in the system is known; the
external load acting on each body is known; and each
joint’s controller may operate in a position-control or
effort-control mode may be switched during manipu-
lation.

Since dynamic effects are assumed to be negligible,
the motion of the system depends entirely on the set of
kinematic constraints applicable at each instant. Let

q and @ be the generalized velocity vectors of the work-
piece and the manipulator system, respectively, with
lengths n, and ng . Then the applicable kinematic
constraints can be written as follows [14]:

Whq-3,0=0 (1)

where each row of the transposed applicable wrench
matrix W£ and the applicable Jacobian matrix J4
correspond to one applicable kinematic constraint on
the system. For each sliding contact, equation (1) en-
sures that the normal relative velocity at the contact
is zero. For each rolling contact, both the normal com-
ponent of relative velocity and the tangential compo-
nent are zero. Thus we see that WZ; and J4 have
2ng + ng rows, where ng and ng are the numbers of
rolling and sliding contacts, respectively. Equation (1)
only applies to sliding and rolling contacts. All other
contacts must break. This condition can be written as
the following system of linear inequalities:

W24 — 3,50 >0 (2)

where the left-hand side of the inequality represents
the normal components of the relative velocities at
the contacts presumed to be breaking.

Since dynamics effects are negligible, the system
is quasistatic and therefore must satisfy the follow-
ing equilibrium equations and Coulomb friction con-
straints at every instant:
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Here ¢4 is the applicable vector of wrench intensities,
Zert 18 the external wrench applied to the workpiece,
T is the vector of joint efforts, and G is the vector
joint efforts induced by external loads acting on the
manipulator system. The matrices W 4, and J4, are
slightly modified versions of W 4 and J4 that reflect
the fact that for sliding contacts, the tangential com-
ponents of the contact forces are proportional to the
normal components. It is important to note that these

matrices depend on the values of § and {, so that
the kinematic and equilibrium equations are coupled.
If the workpiece is frictionless or if all contacts are
rolling, W4, and J4, are identical to W4 and Jy4
, respectively. Inequality (5) ensures that the contact
forces at rolling contacts lie within their Coulomb fric-
tion cones and all contact forces are compressive. The
matrix B4 becomes the identity matrix if all contacts
are sliding or if the object is frictionless (see [14] for
more details).

Accurate motion prediction is only possible if the
set of applicable kinematic constraints can be iden-
tified at every instant. Unfortunately there may be
more that one feasible set for a given configuration
[14]. Therefore, in planning quasistatic manipulation
tasks, we are forced to consider 37 sets of applicable
kinematic constraints, where n. is the number of con-
tacts. Henceforth, the motion associated with each set
will be referred to as a mode of motion.

3 Planning and Execution

Our approach to planning dexterous manipulation
tasks involving slippery workpieces is broken into two
phases. In Phase 1, frictionless planning proceeds via
a CF-cell [13] decomposition of C-space. The CF-cells
are modified to create FS-cells whose connectivity is
represented in a graph. A path through the graph
connecting the nodes corresponding to the initial and
goal configurations defines a family of usable joint tra-
jectories. However, these trajectories are only correct
in the absence of friction. A side effect of planning
under the frictionless assumption is that all contacts
are presumed to slide. Attempting to execute the plan
in an environment with friction may fail if any of the
contacts roll. The results of Phase 2 are trajectory
modifications that prevent the occurrence of rolling
contact.

3.1 Planning: Phase 1

Phase 1 relies on the decomposition of C-space into
contact formation cells, portions of which are sub-
sequently identified (and augmented if necessary) to
generate stability cells. Stability cells are particularly
useful in the frictionless case, because all paths within
them correspond to reversible quasistatic motions [13].

3.1.1 Contact Formation Cells

A contact formation, or CF, [2] is a qualitative repre-
sentation of the state of contact among all the bodies
in the system. A CF is conveniently viewed as a list



of elemental contacts (vertex-face and edge-edge con-
tacts), that corresponds to a surface patch of a config-
uration obstacle, or C-obstacle (for examples of CF’s
see [2] and [11]). A contact formation cell, or CF-cell,
is the set of points, (q ,0 ), in C-space for which a
particular set of elemental contacts is achieved and no
bodies interpenetrate. Let ec be a set of elemental
contacts and let £C be the set of configurations for
which the elemental contacts specified by ec are satis-
fied without regard for interference between bodies in
the system at points away from the specified elemental
contacts. The set £C can be written as follows:

£C={(q,0)|fye0=0/\hy, >0}  (6)

where q and 6 represent the configurations of the
workpiece and manipulation system, respectively. The
elements of the vector functions f,., and hg., are C-
functions defined in [4]. Since the elements of f,.,
represent geometric constraints, they will be referred
to as geometric C-functions. The maintenance of the
equation f,., = 0 guarantees for edge-edge and face-
vertex contacts that the lines supporting the edges
intersect and the vertices lies in the planes supporting
the faces, respectively. They do not guarantee that
the points of contact lie within the finite bounds of
the edges and faces of concern. These constraints are
represented by the inequality h,p, > 0. However,
they do not prevent the overlapping of feature pairs
other than those in the current set of elemental con-
tacts. Therefore, £C must be intersected with Cyq4i4,
defined by Latombe to be the union of free space and
contact space [4]. The set CF contains all system con-
figurations which are geometrically feasible for a given
set of elemental contacts. The vector function f,., has
one element for every elemental contact. While any
number of elemental contacts is possible, in most ma-
nipulation scenarios involving sliding contacts, there
will be less than n, + ng contacts. The satisfaction of
more than n,+ng geometric C-functions would require
special part geometries.

3.1.2 First-Order Stability Cells

In this section, the stability constraints, or physical
C-functions, are derived as functions of q, 8 , and the
joint effort vector, 7 . We make use of the following
relationships [13]:

where J,, and W are the Jacobian and transposed
wrench matrices corresponding to the normal compo-
nents of the relative velocities at all contact points.
Note that if all contacts are sliding (which is normally
the case when the workpiece is frictionless), then W,
and J, are identical to W4 and J 4 , respectively.

First-order stability requires that the wrench ma-
trix, W,, , have full row rank and that there exist at

least n, strictly positive elements of the wrench inten-

sity vector, ¢, , an n.-vector [12]. Under these restric-
tions, W,, can always be written as [W,; | W]

such that W, ; ~! exists. The wrench intensity vector
is then given by:

¢n (0,0, k)=(s +HKk)/d; d#£0 (8)

where d, s , and H are defined below:

s (q ’0 ) — [ —Adj(.“](-)nf )gem :| (9)
H(q.0) = [ ~AG(Wer YWors ] (10)
dlq,0) = Det(Wyr) (11)

where Adj and Det are the adjoint and determinant
operators, k is an arbitrary positive vector of length
1 whose elements are the internal wrench intensities
[7], and I is the identity matrix. The scalar 5 is the
nullity of W,, and can be viewed as the number of
“extra” contacts which must be maintained by com-
pliant control. In the frictionless case, the Coulomb
friction model does not apply. We simply restrict the
wrench intensity vector to have strictly positive ele-
ments. Applying this condition to equation (8) yields
the following physical C-function constraint applicable
to first-order stability cells:

hyny (0,0 . k)=(s +HKk)/d>0; d#0. (12)

The elements of the internal wrench intensity vector
k cannot be uniquely represented in C-space. There-
fore, C-space could be augmented by the elements of
k . Since these elements are not directly controllable,
we relate them to 7 and augment C-space with its el-
ements. Substituting equation (8) into equation (4)
and rearranging yields:

(r —G)d-3Ts =J'Hk ; d£0. (13)

In most situations, there will be at least as many joints
as “extra” contacts (i.e., ng > 1) and the product JZ
H will be full rank. Denoting JX' H by the (ny x n)
matrix A | rearranging its rows, and partitioning it
. . - | A
such that A ; is nonsingular yields: A = [ A i ]
Equation (13) can now be solved for k to yield!:

K(a.0,7)=A 7 (r1—G)d+ @ s )] d£0

(14)
where 77, Gy, and (J% s ); are the partitions of 7 ,
G, and (JL s ) corresponding to the partition A ;.
The ng — n equations of the manipulator system cor-
responding to the partition A ;r; have not yet been
used, but must also be satisfied for equilibrium. They
give rise to f,5, which is defined as follows:

fory (0,0 ,7) = Ak +(Grr—7 rr)d
+(I% s )i ; d#0 (15)

1The case for which A does not have full column rank can
be handled similarly (see [13] for details).




where 7 777, G 177, and (Jz s )rrr are the partitions
of 7, G, and (J1 s ) corresponding to the partition
A 171. Note that because A ; is nonsingular, it pro-
vides a one-to-one and onto mapping relating k and
T 1, thus allowing complete control over the internal
wrench intensities.

We are now in a position to define first-order sta-
bility cells, or FS-cells, in the augmented, ny, + 2np-
dimensional C-space. For a given CF-cell, only the
points satisfying equations (3) and (4) and inequal-
ity (5) are members of the corresponding FS-cell, S,
which is defined as follows:

FS=CFnNnS (16)
where & = 8§t US™ and 8t and &~ are defined as

follows:

St = {(a.0,7)|fm =0k >0
As +Hk >0/\d> 0} (17)
8™ = {(a.0,7)|fm =0 Ak <0

As +Hk <0 /\d<0} (18)

Equation (15) suggests two classes of FS-cells: com-
pliant and noncompliant. It should be clear, however,
that in all configurations, the workpiece will comply
passively with the motion of the manipulator system.
What is meant by compliance here, is active compli-
ance of the manipulator system. The noncompliant
class of FS-cells is characterized by the nonsingularity
of W,, and the maintenance of n, contacts. The most
important implication of which is that the wrench in-
tensity and joint effort vectors are uniquely defined
by the system configuration variables, q and 8 , so C-
space need not be augmented. Also, since each contact
corresponds to a geometric C-function in ng + ng vari-
ables, the dimension of noncompliant FS-cells is ng.
The class of compliant FS-cells is characterized by the
matrix W, being full rank and possessing a nontriv-
ial null space. This implies the maintenance of n, +n
contacts which requires active compliant control. This
can be accomplished by effort-controlling an appropri-
ate subset of the system’s joints. In this case, C-space
is augmented with the elements of the joint effort vec-
tor, so the dimension of C-space grows to n, + 2n,.
Fortunately, the numbers of geometric and physical C-
function equations defining F'S-cells also grow to n,+n
and ng — n, respectively. Therefore, once again, the
dimension of FS-cells is ny despite the augmentation
of C-space. Physically, this result corresponds to the
well-known fact that in rigid body systems, the posi-
tion and effort of a joint cannot be controlled simul-
taneously.

Figure 2 shows a two-dimensional FS-cell corre-
sponding to the four-contact CF of the initial grasp
shown in Figure 1. Manipulation maintaining the CF
of the initial grasp (see Figure 1 would require com-
pliant control. This could be accomplished by con-
trolling the right-hand finger’s torque to lie between

the bounds (shown in bold solid lines) while the other
finger was position-controlled. Note that the upper
bound goes to infinity, but was truncated at the max-
imum torque that our system could apply. Where the
upper bound is finite, applying a greater torque would
cause a palm contact to break, so the corresponding
CF would not be maintained. Where the bound is in-
finite, the geometry of the contacts is such that the
workpiece may be squeezed infinitely tightly without
breaking any contacts. This is the fundamental char-
acteristic of workpiece envelopment (discussed further
below). The zero-valued lower bound alludes to two
facts: the weight of the workpiece passes through the
edge of contact on the palm and applying a negative
torque would cause the right-hand finger to accelerate
away from the workpiece.
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Figure 2: Compliant FS-cell for initial CF.

3.1.3 Envelopment: Form Closure

Envelopment is equivalent to the purely geomet-
ric condition of form closure, which was defined by
Reuleaux in 1876 as follows:

Definition: Form Closure: A fixed set of con-
tacts on a rigid body is said to exhibit form closure if
the body’s equilibrium is maintained despite the ap-
plication of any possible externally applied wrench.

Since form closure is a geometric condition, its ex-
istence can be determined by considering W,, . The
necessary and sufficient conditions for form closure are
that the rank of W,, be n, and that the positive vec-
tor k exist such that the product W,; ~*W,;; k
has strictly negative elements [12]. From these con-
ditions, one can infer that n. must be greater than
n, . Therefore, form closure can only exist in regions
01g compliant FS-cells. Points satisfying the necessary
and sufficient conditions can be written as follows:

FMCt = {(q.8.7)| Nk >0/\d>0
N\ —AdG(Wor YW k >0} (19)



FMC™ = {(q.0,7)| ANk >0A\d<0

N\ —Adi(Wo; YW, k <0} (20)

Intersecting the sets FMCT and FMC™ with FS
yields the subset of & in which the workpiece is en-
veloped. The primary drawback of form closure con-
figurations is that the relatively large numbers of con-
tacts reduces the mobility of the workpiece. However,
this can help reduce planning time since the the di-
mensions of the corresponding CF-cells are relatively
small.

3.1.4 Generation of Joint Trajectories

Once a path through the FS-cell connectivity graph
has been found, a path through each FS-cell must be
found. Since FS-cells are not convex sets, geodesic seg-
ments connecting entry and exit points in the FS-cells
are not guaranteed to yield feasible plans. However
this can be overcome by employing slightly modified
versions of Lumelsky’s “Bug” algorithms [5].

3.2 Planning: Phase 2

Manipulation plans determined in Phase 1 assume
that all contacts slide and by construction satisfy the
applicable kinematic constraints, (1) and (2), at every
point along the joint space path. However, the execu-
tion of a frictionless quasistatic plan in the presence of
friction raises the question, “Does the quasistatic mo-
tion model (equations (1)-(5)) admit solutions with
rolling contacts somewhere along the planned path?”
If the answer is “Yes,” then execution of the planned
control trajectories may not produce the desired ma-
nipulation. Therefore, we must determine conditions
under which the answer is “No” by checking the qua-
sistatic feasibility of all 3”¢ possible modes of motion

[14].

Our motion model is quasistatic, but, unfortu-
nately, mode-of-motion switching is an inherently dy-
namic event. Joint and object velocities and wrench
intensities undergo discontinuous changes. Thus one
would be tempted to include dynamic and impact ef-
fects. However, while the quasistatic motion model
may not be the best model for predicting switching
between modes, we found it a reasonable indicator
and we were able to use it to prevent rolling based
upon the following logic. Mode-of-motion switching
is viewed as an impact which gives rise to transients
in control efforts and contact forces that are assumed
to attenuate quickly (i.e., before the system configu-
ration has changed appreciably). Also, because the
system is moving slowly, dynamic considerations may
not yield significantly different predictions of mode-of-
motion switching. Therefore, in a given configuration,
if only the planned mode of motion is feasible, then
that mode will probably persist otherwise mode-of-
motion switching is possible. Thus the conditions for
the feasibility of mode-of-motion switching at a point
on the planned path are:

1. The potential new mode of motion must be kine-
matically feasible given the current joint velocities
of the position-controlled subset of the joints.

2. Equilibrium of both the planned mode of motion
and the hypothesized new mode must be simulta-
neously feasible given the current of joint efforts
applied by the subset of effort-controlled joints.

If these conditions are not met, then mode-of-motion
switching results in a system state that is dynamic,
thereby violating the quasistatic model?.

The two mode-of-motion switching conditions re-
strict the set of potential new modes to those with the
same number of kinematic constraints as the planned
motion. Modes with more kinematic constraints have
overdetermined systems of applicable kinematic equa-
tions (1), because too many of the elements of the
joint velocity vector are specified by the plan. Modes
with fewer kinematic constraints violate the equilib-
rium equations (3) and (4), because too many ele-
ments of the joint effort vector are specified. There-
fore only modes of motion for which 2ng, +ns, = ng,
(with one exception discussed below) need be consid-
ered. The scalar ng, is the number of sliding con-
tacts in the planned mode of motion and ng, and ng,
are the numbers of rolling and sliding contacts in the
potential new mode of motion. This relationship be-
tween the numbers of sliding and rolling contacts sub-
stantially reduces the number of modes of motion that
must be considered. For example, for cases with 3 and
4 contacts, the numbers of modes reduces from 27 to
7 and from 81 to 18, respectively.

Figure 3 shows (in bold solid lines) the upper and
lower torque bounds corresponding to all the CF-cells
of the complete manipulation plan shown in Figure 5
(as a piecewise smooth solid curve) 3. The regions
between the bounds are a series of connected FS-cells
defined in subsubsection 3.1.2. The dashed curves are
the FS-cells modified to include friction effects. The
horizontal axis has units of distance along the joint
space path. The FS-cells were not plotted against a
joint angle, since they would overlap and be difficult
to interpret.

Consider the frictionless bounds in Figure 3. From
distance 0 to 234, the bounds are those shown in Fig-
ure 2. At 235, the workpiece has been translated left-
ward until the lower left vertex of the workpiece con-
tacts the left finger (it still contacts the palm). The
workpiece instantaneously gains form closure and both
torque bounds exhibit jump discontinuities. Moving
beyond 235, the workpiece rotates clockwise maintain-
ing two contacts on the left finger, one on the palm,

2These conditions do not allow the prediction of potential
jamming, because when the system jams, q and ¢ become zero,
violating Condition 1. In general jamming is important. How-
ever, in the specific application discussed below, the coefficient
of friction was small enough so that jamming never occurred.
Therefore, we will not discuss it further here.

3This is the same path that was discussed in [11] before for-
malizing the concept of FS-cells



and one on the right finger. At 520, a new contact
occurs on the palm. The object then translates to the
left, breaking the distal contact on the left finger. The
lower torque bound returns to zero, because the weight
of the workpiece passes through the edge contact on
the palm. As the workpiece slides leftward toward its
goal, form closure is again achieved.

The bold dashed lines in Figure 3 are the torque
bounds modified for Coulomb friction. The same co-
efficient, 0.1, was assumed at all contact points. The
qualitative features of curves are quite similar to those
of the frictionless case, however, there are two dis-
tinctive features. First, the discontinuity at 273 is
the point at which the direction of sliding at one con-
tact reversed. This reversal caused a discontinuity in
W 4 which is used in the computation of the torque
bounds. Second, in the short interval beginning at 520
where the frictionless workpiece lost form closure, the
frictional workpiece did not. This is because in the
frictional case, sliding has the same effect as tilting
the contact normals and in this case the tilting caused
frictional form closure.
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Figure 3: FS-cells modified by friction.

Only in the initial portion (from 0 to 234) of the ma-
nipulation plan was rolling contact a potential prob-
lem. The bold dashed curves shown in Figure 4 are the
same torque bounds shown as bold dashed curves in
the previous figure. The solid curve rising gently be-
tween the bounds is the upper bound for the potential
mode of motion with rolling contact. The lower bound
is zero. This plot suggests that the applied torque
during manipulation be chosen above the solid curve.
When this was done, the manipulation task progressed
according to the frictionless plan. If not, rolling at
the left-most palm contact was observed. However,
it was not clear whether mode-of-motion switching
occurred in the region where both the planned and
rolling modes of motion were feasible, or in the region
where only the rolling mode was feasible.
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Figure 4: Torque bounds for four sliding contacts and
for one rolling, two sliding, and one breaking.

4 Experimental Results

A scale model of the system depicted in Figure 1
was built with teflon-coated links. The fingers were
directly driven by d.c. motors whose joint angles
were sensed by potentiometers. Each motor could
operate in either a closed-loop position-control mode
or an open-loop effort-control mode; both operated
at 100Hz. The controllers were implemented on
an 80486-based personal computer running LynxOS.
Each control mode for each motor was implemented in
C as a thread with one thread per finger active during
any given control cycle. When the planned number of
applicable kinematic constraints changed, the set of
active control threads was changed accordingly. Com-
pliant motions maintaining four contacts were imple-
mented by position-controlling the right joint while
torque-controlling the other.

Figure 5 shows the piecewise smooth path in joint
space that was executed to achieve the desired grasp
of the workpiece (see Figure 1). The path corresponds
to compliant moves with four and five contacts. The
five-contact CF-cells are the extreme upper-right and
lower-left corners in the plot. The four-contact CF-
cells are the smooth curve segments connecting them.
The slope discontinuities correspond to configurations
where a vertex of a finger slides across a vertex of
the workpiece. At the lower left corner, the path ap-
pears to double back. It does not; the curves entering
and leaving the corner correspond to distinct CF’s.
The noisy curve overlaying the piecewise smooth curve
is a plot of the joint angles sensed during execution
of the task. The plots shows relatively good agree-
ment between the theoretical and actual joint space
paths except near the goal. The primary cause of
this discrepancy was dynamic effects arising during
tipping. These effects could be corrected by increas-
ing the gains of the controllers and increasing the task
execution time, which for the plot below was approx-
imately 5sec.
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Figure 5: Planned and executed joint-space paths.

5 Conclusions

First-Order stability cells, or FS-cells, are regions
of an augmented C-space in which a frictionless work-
piece can be manipulated while maintaining stable
equilibrium. All FS-cells, regardless of whether they
correspond to noncompliant or compliant manipula-
tion, have dimension ng . This is a welcome result
from the perspective of manipulation planning, since
the dimension of the corresponding C-space is ng +n,.
The conditions for workpiece envelopment imply that
envelopment can only occur with more than n, con-
tacts. Therefore its maintenance requires compliant
control. The major disadvantage of FS-cells is the
underlying assumption of no friction. However, it was
demonstrated that the cells could be modified to guar-
antee successful execution in the presence of friction.
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