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Abstract. This paper describes a technique for planning collision-free, fuel-efficient paths and
thruster controls for moving Sprint from an initial to a goal location and attitude among multiple
obstacles. The planning problem is formulated as a nonlinear optimization problem whose param-
eters are the locations of control points of splines representing Sprint's path and the time interval
between the control points. Using Matlab as a test bed, many paths were found for an environment
designed to approximate a space shuttle.
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1 Introd uction

NASA JSC is developing a "flying" semi-autonomous "eyeball" to allow astronauts to visually
inspect space vehicles or structures on orbit without the cost of a space walk. The "eyeball,"
Sprint, is primarily a camera enclosed in a padded spherical structure fitted with 12 thrusters and
telemetry equipment. Its simplest mode of operation would require an astronaut to "fly" it using
a joy-stick with limited visual feedback to "fly" Sprint from one inspection point to another.

The objective of this project was to develop routines for planning safe, efficient, paths for Sprint
to follow autonomously. Thereby freeing the astronaut for other tasks. The planner discussed herein
can generate time- and energy-efficient, collision-free paths and associated thrust histories to desired
configurations. Figure 1 below shows an approximation of a space shuttle formed by the union of
three ellipsoids, and a possible path that would relocate Sprint from a position near the tail to near
the middle of the fuselage. The arrows with their tails on the path are the angular velocity vectors
of Sprint at the corresponding points along the path.

Approximate Shuttle

2

w'-
Q)
"'Q) 1
E

'--'

II>

.~ 0

N

initial

-1 ;.,:: ..:: : Fina1 5 0

-5

-4

Y-axis (meters
X-axis (meters)

Fi ure 1: A smooth collision-free ath connect in two ins ection locations.

In what follows, we will present the dynamic model of Sprint, a method for representing Sprint's
position and attitude trajectories as sets of spline curves (one set for each of Sprint's 6 degrees of
freedom), a method for computing thrust histories to follow a given sprint trajectory, an objec-
tive function to minimize to produce the optimal trajectory, simulated experimental results, and
suggestions for further improvement of the method.

Dynamic Model of Sprint1.1
Let the column vector p(t) = [x(t) y(t) z(t) ]T (the superscript T denotes the transposition opera-

tor) represent the position trajectory of the center of mass of Sprint with respect to an inertial frame.
Similarly, let the vector u(t) = [Ux(t) Uy(t) Uz(t)]T represent the attitude of a right-handed coordi-

nate frame fixed to Sprint with its origin coincident with Sprint's center of mass. These two vectors
together completely specify the configuration of Sprint. Note that while any parameterization of
attitude could be used, we have chosen to use modified Rodriguez parameters, because they pro-
vide a singularity-free representation in the range ::1::3600 [1]. The rotation matrix, C(u) E 80(3),
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describes the orientation of the body-f1.xed frame with respect to the inertial frame and can be
written as follows:

1-
4(u; -u; -u;) + ~

8uxuy -4uz~
8uzux + 4uy~

SO"xO"y + 40"zE
4( -0"; + O"~ -0";) + E"'"

SO"yO"z -40"xE

8uxuz -4uy}:::

8uyuz +4ux}:::

4( -u2 -U2 + U2 ) + }:::~x y z

(1)where sigma is defined as E = (1 -",T ",)~.
In order to write the dynamic equations, let us define the generalized six-dimensional velocity,

q(t). It is composed of two three-vectors representing the linear and angular velocity of Sprint, v(t)
and (AJ(t), defined with respect to the inertial frame. The linear velocity is just the time derivative
of the position of the center of mass of Sprint. The relationship between the angular velocity (AJ
and the time rate of change of the attitude parameters u is more complicated:

B -l-

fN= 0' (2)

where B(u) is defined as follows:

( 1 + 0-2 -0-2 -0-2

)x y z

2(o-xo-y + o-z)
2(o-zo-x -o-y)

2(O"xO"y -O"z)

(1 -0"2 + 0"2 -0"2 )x Y z
2(O"zO"y + O"x)

2(0":l:O"z + O"y)

2(O"yO"z -0":1:)

(1 -0"2 -0"2 + 0"2 ):I: Y z

1B(O') = "4
(3)

Finally, the generalized velocity can be written as:

(4)

Similarly, the generalized acceleration q(t) can be written as:

(5)

where c:.; is given by:

(6)
. B -1

( ,. B' )(&1= (1'- (&1.

Sprint's equations of motion can now be written in the following form:

Mil -h(q, q) = DWc

c ~ 0
(7)
(8)

where c is nt-vector of (unidirectional) thrusts with one element for each thruster (note that nt = 12
for the current version of Sprint, but a smaller number could still control Sprint effectively), W is
the (6 x 12) wrench matrix that maps the thruster forces into forces and moments expressed with
respect to the body-fixed frame, the (6 x 6), block diagonal mass matrix computed with respect to
the inertial frame is given by M = diag{mE, CIC-1}, where E is the (3 x 3) identity matrix
and m is the mass of Sprint, D is the block diagonal matrix defined as D = diag{ C, C}, and h
is the vector of velocity product terms defined as:

h= (9)

0
0
0

-'" X GIG-I",
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where I is the constant (3 x 3) inertia tensor computed with respect to the body-fixed frame.
data provided in [2], m = 15.69kg, and Wand I are:
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(10)
where the elements in the first three rows are dimensionless and those in the last three rows have
units of meters, and

Ixx -Ixy -Ixz

-Ixy Iyy -Iyz
~ -Ixz -Iyz Izz ~

where Ixx = 0.159kg m2, Iyy = 0.168kg m2, Izz = 0.156kg m2, Ixy = 0.0043, Ixz = -0.0040, and
Iyz = -0.0060kg m2.

Note that the dynamic equations defined here assume that the structure to be avoided is fixed in
inertial space. The effects due to the fact that the structure is actually in orbit are not accounted
for here, nor are they in our implementation. However, including these effects (by augmenting
the dynamic model with the well-known CW equations) will not affect the performance of the
optimization scheme.

I=

1.2 Trajectory Generation

In order to find the "best" trajectory for Sprint, we need a compact method for representing
trajectories and a means to evaluate each one. We have chosen to represent trajectories as cubic,
uniform, nonrational B-splines. As such, a trajectory is completely specified by a small set of
control points and a time interval between the points. These splines are continuous in their first
and second derivatives (assuming that consecutive control points are distinct, as they are for our
application). Trajectory evaluation will be discussed in the section "Trajectory Optimization."

Each degree of freedom of Sprint's configuration will be represented by ns spline segments. For
example, given ns + 3 control values [X-2 X-I... xn.], the x-component of Sprint's configuration
trajectory is defined as follows:

n..
x(t) = L Xk(t)

k=l
where

Xk(t) = f bkQUk
0

tk ~ t < tk+l
otherwise

Xk(t) is the kth spline segment and u'[ = [(t -tk)3 (t -tk)2 (t -tk) 1]
Xk(t) are bk = [Xk-3 Xk-2 Xk-l Xk], and the weighting matrix Q is:
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Given ns + 3 positional control points, P = [P-2.'. Pn.], the trajectories for all three transla-
tional degrees of freedom of sprint can be written as follows:

n.
p(t) = L Pk(t)

k=l

where
PkQUk
0

tk .s: t < tk+l
otherwise

Pk(t) =

and Pk is

Pk=
Xk-3 Xk-2 Xk-l Xk

Yk-3 Yk-2 Yk-l Yk

-Zk-3 Zk-2 Zk-l Zk-

Similarly, given ns + 3 attitudinal control points, S = [0'-2", O'n.], the trajectories for all three
rotational degrees of freedom can be written as:

n6
U(t) = L Uk(t)

k=l

where
AkQUk tk ~ t < tk+l
0 otherwise

O'k(t) =

and

Ak =
-(o-z)k-3 (o-z)k-2 (o-z)k-l (o-z)k

(o-Y)k-3 (o-y)k-2 (o-Y)k-l (o-y)k
~ (o-z)k-3 (o-z)k-2 (o-z)k-l (o-z)k ~

From these cubic splines, we can determine linear velocity and acceleration of the center of
gravity of Sprint, jJ(t) and p(t) as:

jJ(t)
n.
L Pk(t)-

p(t) -

where
PkQUk
0

tk ~ t < tk+l
otherwise

Pk(t) = (23)

and
..(t) = { PkQUk tk.s: t -:: tk+l (24)

Pk 0 otherWIse

The angular velocity and acceleration of sprint can be computed using equations (2), (6), (25),
and (26):

ir(t)
n.
L Uk(t)
k=l
n.
L Uk(t)
k=l

-

u(t) -
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where
AkQSk
0

tk ~ t < tk+l
otherwise

Uk(t) =

and
AkQSk
0

tk ~ t < tk+l
otherwise

o-k(t) =

1.3 Thrust History Computation

Given a set of control points and a time interval, the position and attitude trajectories and their
first and second time derivatives can be computed as indicated above. From these trajectories,
one can determine D(t), M(t), h(t), and q(t). Substituting these functions into the dynamic
equation (7) and rearranging yields the resultant thruster force and moment (the product Wc) as
functions of time:

D-1(Mq -h) = WC.

Note that the resultant force and moment are represented with respect to Sprint's body-fixed
frame. Assuming no errors, if these resultant force and moment trajectories can be achieved by the
coordinated control of the thrusters, then Sprint will follow the trajectory represented by the given
points and time interval.

Since n-1 exists and is unique, the resultant force and moment to be applied by the thrusters
is known uniquely. However, what is needed, is the vector of thrust histories, c(t). Fortunately, W
is full row rank, so a solution for c exists for every time t, but W has a nontrivial null space, so
the solution is not unique. This nonuniqueness provides the opportunity to determine the solution
which minimizes the rate of fuel expenditure at each instant of time, and thus minimizes the total
fuel use for a given set of splines defining the motion of Sprint.

The general solution for the thrust vector is:

c(t) = W+ D-l(Mq h) + N~

where W+ is the generalized inverse of W, N is a matrix whose columns form a basis for the
null space of W, and ~ is an arbitrary vector function of time.l The first term on the left hand
side of this equation is known as the particular solution Cp = W+ D-l(Mij -h). It is responsible
for ensuring that the thrusters' resultant force and moment are correct. The second term, the
homogeneous solution, does not contribute to the resultant force and moment. Rather, varying ~
effects only the internal stresses generated, which of course, should be minimized.

For a given thruster, the rate of fuel expenditure is proportional to the thrust. Therefore, the
desired vector of thrusts at any instant of time, is the one that minimizes the sum of the elements
of c, while still achieving the correct resultant force and moment and satisfying c :? 0 (since the
thrusters are unidirectional). These constraints define the following linear program in ~:

Minimize:

subject to:
(31)nT~

N~ ;::: -cp

where nT is the row vector formed by summing all the rows of N, and the variable ~ is uncon-
strained. Solving this linear program at a given instant of time yields the most fuel-efficient thrusts
for that time instant. In the present implementation, the position and attitude trajectories are

lWe remind the reader that all terms in equation (30) with the exception of W are functions of time. However,
we have abandonded showing this dependence explicitly for brevity.

6



discretized in time and the above linear program is solved at each time. This approach is simple
to implement, but considerably less efficient than an approach based on sensitivity theory of linear

programming.

1.4 Trajectory Optimization

We formulate the planning problem as a nonlinear optimization problem whose parameters are the
elements of the control points contained in P and 5 and the time interval between the control
points, Il = tk+l -tk. Our objective is to find the spline curves q(t; P, 5, Il) with the following
attributes:

1. The flight time of Sprint should be short.

2. Sprint may not collide with the structure.

3. The fuel consumption should be small.

4. The resultant force and moment required should never exceed what can be produced by the
thrusters.

Trajectories minimizing the objective function ct> (defined next) will exhibit these attributes:

<jJ(t, a)

where WI, W2, W3, and W4 are nonnegative weights, J(t) and T(t) are the resultant force and
moment trajectories, 9 is the six-vector of resultant generalized force, i.e., 9 = [JT TT]T, and
IIJllma:!: = 0.49N and IITIlmaz = 0.0049Nm are the norms of the (approximate) maximum resultant

force and moment of the thrusters. The term multiplied by WI is the square of the total traversal
time. Increasing WI tends to generate trajectories that require less time to execute, but use more
fuel. The term multiplied by W2 is the collision penalty (described below in detail). A set of
splines that would result in collision would have a negative value of p. Thus collisions work against
minimization. Large values of W2 imply that collision avoidance is very important. In the first
integral term, R is a positive definite matrix that weights the relative importance of the resultant
force and moment applied by the thrusters. While it is not a direct measure of fuel expenditure,
larger values of c increase this integral and the objective function. Thus when R has large (eigen-)
values fuel economy becomes very important. The second and third integral terms are the differences
between the amounts of resultant force and moment required by the splines and that which can be
produced by the thrusters. These terms only inflict a penalty if the required force and moment are
more than can be produced. Also, note that this is an approximate measure since in our chosen
optimization approach, we do not work with the thrusts directly. Nonetheless, the term produces
the desired effect as will be seen in the results following this section.

The penetration penalty function p is defined as follows. Let D be a set of set of N test times
distributed in the interval [0, nail], with elements denoted by bj, j = 1... N, and let ne be the
number of ellipsoids whose union form the geometric model of the structure. Define the penalty
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Pij(Oj) as follows:

)2

2
Xj -aix

rix
Yj -aiy

riy

Pi; = mill (0, +

where aix, aiy, and aiz are the offsets of the center of the center of the ith ellipsoid, and rix,
riy, riz are the lengths of the principle radii of the ith ellipsoid, and Xj = x(tSj), Yj = y(tSj), and
Zj = z( tSj) are the coordinates of a test point on the position spline to be tested for intersection

with the structure. Note that Pij is negative when the test point is inside the ith ellipsoid and zero
otherwise. The penalty, P can now be written as:

,PN,j)P = Lmin(O, Pl,j, P2,j,

j

Thus we see that p is the sum of the "deepest" penetrations in each of the ellipsoids for each of the
N penetration test times.

One other relevant point is that the trajectory found by the optimization procedure can be
scaled easily. If, for example, the path for Sprint is acceptable, but more fuel savings is desired (at
the expense of more traverse time), the time can be scaled. This is an extremely simple procedure
that takes only about 1 second of cpu time. If one increases the traverse time by a factor, the fuel
use is (approximately) reduced by the same factor. Thus tripling the traverse time will reduce the
fuel requirement to one third of the original requirement.

Results2

We have implemented our trajectory planning method described above in MATLAB 5.2 Release 10
using a quasi-Newton method for unconstrained minimization. The convergence parameters were
set to a tolerance of 0.1 for changes of the coordinates of the control points and the time interval.
In addition, the maximum number of evaluations of the objective function was set to 1200.

The examples below use a space structure approximated by the union of three ellipsoids. The
equations of the ellipsoids represented in the inertial frame are:

22

)2
x -aix

rix
y -aiy

riy

z -aiz

Tiz
fi(X, y, z) = -1; for i = 1,2,3+ +

where x, y, and z are the inertial coordinates, aia; a E {x, y, z}, are the offsets from the origin of
the inertial frame to the center of the ith ellipsoid in the a directions, and ria; a E {x, y, z} are the
lengths of the primary axes of the ith ellipsoid. A given point, [x, y, z], is inside the ith ellipsoid if
fi(X, y, z) is negative, on the boundary if fi(X, y, z) is zero, and outside otherwise.

For the following examples the ellipsoid parameters were taken to be:

0.0
-1.5

-3.0

5.0
3.0
0.5

aly = 0.0
a2y = 0.0
a3y = 0.0
Tly = 1.0
T2y = 4.0
T3y = 0.2

(

-(

]

]

(

]

alx -
a2x -
a3x -
rlx -
r2x -
r3x -

alz

a2z

a3z

Tlz

T2z

T3z

-

These ellipsoids form a crude model of a space shuttle.
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2.1 Example 1

In this example, a trajectory was planned parallel to the inertial x-direction along the fuselage also
oriented along the inertial x-direction, but far enough away such that a straight-line path would
not cause collisions. Sprint was to begin and end at rest. The initial and final configurations were
defined as: .

-.:.-..
]

(

(

(

,
.:
..-.
]

(

(

(

[ Pinit

]Sinit

Pfinal
S final (40)

Note that in both configurations, the three MRPs (modified Rodriguez parameters) are zero. In this
case, the body axes of sprint are parallel to the axes of the inertial frame. These configurations were
chosen for testing purposes, because intuitively, the optimal trajectory should be one which simply
translates Sprint six meters in the x-direction. Since Sprint's x-direction thrusters are aligned
with the direction of translation, we expected symmetrical firings of the x-direction thrusters and
no firings of the other eight thrusters. As will be seen below, the trajectory found exhibits these
characteristics.

The constraint that Sprint will begin and end at rest was enforced by placing the initial and
final configurations in the matrices, P and A, in triplicate as shown below:

-3.0 -3.0 -3.0 -1.5 0.0 1.5 3.0 3.0 3.0
-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

[ P ] = 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 (41)
A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The initial and final configurations account for the first and last three columns of matrix in equa-
tion (41). These columns are fixed throughout the optimization procedure, since the only candidate
trajectories must have Sprint at rest at the beginning and end. The interior three columns of the
matrix are the coordinates of the three adjustable control points. These 18 values were adjusted
by the optimization algorithm to minimize the objective function. The initial values in the three
adjustable columns were found by linear interpolation between the initial and final configurations
(as a convenient way to automatically initialize the optimization algorithm.

The remaining initial parameter required to start optimization is the time step between the
control points, i. e., the knot times. The program always set the initial value to 10 seconds. For
a trajectory with three adjustable control points, 10 seconds corresponds to a trajectory traverse
time of one minute. The knot vector for this problem is:

kt = [0 10 20 30 40 50]. (42)

Finding an optimal trajectory for this example required optimization over 19 parameters, the
elements of the three adjustable control points, and the time interval between the control points.
This was done several times using different weights in the objective function (33).

Example 1: First Run

For the first run, the weights were taken to be: WI = 1, W2 = 200, W3 = 30, W4 = 1, and
R = diag{5, 5, 5, 1, 1, I}. These values enforced a moderate penalty on collisions and exceeding
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thrust capacities, and placed a moderate penalty on large forces and long traverse times. The
expected trajectory then is one that will use the close to the maximum available thrust yielding a
relatively short traverse time. The remaining parameter needed to specify the objective function
of the distribution of test times over along the trajectory to test for collisions. Our code used 10
test points on each spline segment, so for this example, with 6 spline segments, N was 60.

The results reported below were obtained in 274 seconds of cpu time on a Pentium PC running
at 120 MHz. The optimization algorithm evaluated the objective function 285 times in finding the
optimal path shown in Figure 2. This path is a straight line parallel to the fuselage, as expected.
The initial and final positions are indicated by the circles at the end points. The three circles
interior to the path are the positions of the optimal control points. Their values are given in the
three central columns of the follow array:

-3.0 -3.0 -3.0
-2.0 -2.0 -2.0

1.1 1.1 1.1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

-1 -0.001
-2.0

1.1
0.0
0.0
0.0

1.96
-2.0

1.1
0.0
0.0
0.0

3.0 3.0
-2.0 -2.0

1.1 1.1
0.0 0.0
0.0 0.0
0.0 0.0

,
.:

,-..
]

(

(

(

[ ~: ] = (43)

Nte the symmetry in the adjustable control points. The corresponding optimal value of the time
interval between the control points was found to be 4.67 seconds.

Approximate Shuttle
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Figure 2: A straight-line path connecting two configurations.

Figure 3 shows that the x-coordinate of Sprint's position varies smoothly, monotonically increas-
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ing from its initial value of -3 to its final value +3 in 28 seconds. Further calculations projected
fuel expenditure of O.O185kg, which is 6.6% of the fuel capacity, O.281kg. The y- and z-coordinates
remain constant as would be expected, since any deviation from the straight line path would require
additional fuel.

Figure 3: Sprint position coordinate traiectories.

Figure 4 shows Sprint's velocity components. Note that the x-component begins and ends at
zero and varies smoothly and symmetrically between the end points. The y- and z- components are
zero throughout the trajectory. Note that the position trajectories can be show to be piecewise-
cubic curves. Therefore, the linear velocity trajectories must be piecewise-quadratic curves and the
linear acceleration trajectories must be piecewise-linear curves (see Figure 5).

Since the linear acceleration of Sprint's center of mass is proportional to the resultant force
of the thrusters, it is not surprising that the plots in Figure 6 are scaled versions of those in the
previous figure. Notice that in the first half of the trajectory both aft x-direction thrusters are
acting in unison to produce translational motion in the positive x-direction without producing any
rotation. One of the thruster's values are represented by circles, the other by plus signs. During
this time, the two forward x-direction thrusters are off. In the second half of the trajectory the
forward thrusters act together to null the velocity while the aft thrusters are off. Note, however,
that the maximum required thrust, 0.38N, exceeds the 0.349N capacity of the thrusters. This is
due to use of penalty terms in the objective function to limit thrust rather than using inequality
constraints in the optimization algorithm. To correct the problem, one can scale the trajectory in
time, increasing it by a factor of ~ = 1.04. This would increase the traverse time from 28.0 to
29.2 seconds.

Finally, plots of the orientation, angular velocity and acceleration, and thrust histories from the

11



Figure 4: Sprint linear velocity component traiectories.

Figure 5: Sprint linear acceleration component traiectories.
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Figure 6: Sprint thruster traiectories.

other eight thrusters are not shown here, since they are identically zero throughout the trajectory;
again, as expected.

2.1.2 Example 1: Second Run

Only one parameter was changed for this run: the weight, ws, was changed from 5 to 500. This
placed a large penalty on fuel usage. The optimizer converged after 109 function evaluations in 110
cpu seconds finding a trajectory with a 48.6 second traverse time (74% longer) and requiring just
0.0092 kilograms of fuel (50% less). None of the plots are shown here, because they are qualitatively
similar to those for the first run. The primary differences of note are that the maximum linear
velocity for the second run was reduced by 50% to 0.21m/ s and the maximum thrust was reduced
by 58% to 0.16N.

-3.0 -3.0 -3.0
-2.0 -2.0 -2.0

1.1 1.1 1.1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

-1 -0.00 1.68
-2.0 -2.0

1.1 1.1
0.0 0.0
0.0 0.0
0.0 0.0

3.0 3.0 3.0
-2.0 -2.0 -2.0

1.1 1.1 1.1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

[ P* ] - A* -
(44)

The corresponding optimal value of the time interval control points was found to be 8.10 seconds.
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2.2 Example 2

In this example, a trajectory was planned starting from beside the tail on the top of Sprint to
under the wing on the opposite side. A straight-line path connecting these configurations would
pass through the center of the structure. The weights used to obtain this trajectory were: WI = 1,
W2 = 1000, W3 = 30, W4 = 1, and R = diag{10, 10, 10, 1, 1, I}. This enforces a moderate penalty
on collisions and on using more thrust than is The initial and final configurations were defined as:

-3.0

-0.4
1.1
0.2
0.2
0.7

-0.8

1.3
-1.0

0.8
0.5
0.1

[ Pinit ] =

Sinit

Pfinal
S final

(45)-

The path shown in Figure 7 was found in about 7 minutes of cpu time using only one adjustable
control point, whose final optimal value was: p* = [2.615 3.490 -0.186]T (shown as a circle
near the nose of the shuttle.), and 8* = [0.498 0.349 0.401]T Traversing this path will require 498
and less than 15% of the fuel capacity. As mentioned previously, the fuel expenditure could be
approximately halved if the traverse time were doubled.
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Figure 7: Traiectorv looping around the fuselage and wing.

The remaining figures contain plots of various physical quantities for this trajectory. Only the
most important aspects of which will be pointed out.

Note the nonmonotonic behavior of the x- and y-components of Sprint's position. This is due
to the fact that the path must go around the wing and fuselage to avoid collisions.

The thrust plots show a mismatch between the aft and forward pairs of thrusters that was
not present in the first example. This mismatch is due to the fact that Sprint must change its
orientation, which can only be accomplished by applying a resultant moment. Note that the
mismatch is greatest at the beginning and end of the trajectory implying that a large moment
impulse is being used initially to initiate the proper rotation and then a large moment impulse is
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Figure 8: Sprint position component traiectories.
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Figure 9: Sprint linear velocity component trajectories.
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Figure 10: Sprint linear acceleration component trajectories.
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applied again at the end of the trajectory to arrest the rotation. Also, the mismatches between the
thrusters are distributed across the three thrust plot figures. The plots show that the rotation is
initiated primarily by a pair of y-direction thrusters and arrested primarily by x-direction thrusters.
This is explained by the fact that Sprint is reorienting during the trajectory.

X-Direction Thrusts
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Figure 11: Traiectories for x-direction thrusters.

3 Possible Improvements

Numerous improvements could be made to the planning software, but even without improvements,
one could easily find a computer that would run the Matlab code 5 times faster than a Pentium/120
used for the experiments discussed here. For further improvement, the planner could be coded
carefully in C to obtain another factor of 10 speed-up. With a speed-up factor of 50, nearly all
plans would complete in less than 30 seconds. Even complicated ones requiring three to five control
points.2 It would be useful to automate the selection of the collision weight W2 in the objective
function and N the number of collision test points, as it sometimes takes several runs with increasing
value of W2 to generate a path that avoids collisions.

It would also be possible to create a user interface to allow direct interaction with the splines and
control points in real-time. The benefit would derive from using a user's intelligence and experience
to generate good initial guesses for the locations of the control points, and to allow adjustments of
the trajectory after convergence of the optimization algorithm.

2In numerous experiments in simple environments, we have never found a trajectory with four control points that
could be significantly improved with five control points.
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Figure 12: Traiectories for '!I-direction thrusters.

0 5 10 15 20 25
Time (s)

30 35 40 45 50

Figure 13: Traiectories for z-direction thrusters.
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Angular Velocity (in inertial frame)
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Fi.u:ure 14: Sprint angular velocity component trajectories.

Modified Rodriguez Parameters (MRPs)
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Figure 15: Modified Rodriguez parameter traiectories.
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Fi lire 16: Tra °ectories of the first time derivatives of modified Rodri uez arameterso

The most useful enhancement of the planner would be to create a postprocessor that would take
the continuous thrust trajectories generated by our planner and produce pulse-width-modulated
thrust histories for execution on Sprint. Such an algorithm would be straight forward to implement.
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