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1 Introduction

Multi-body dynamic systems are ubiquitous in our society: motors, engines, and the automation
devices used to build portions of these machines are common examples. Where possible, machine
designers use joints that provide bilateral kinematic constraints between the connected bodies
(e.g., pin joints). Such joints are desired, because they are easy to analyze during design, and
they have long operational lives. In some situations, however, design constraints dictate the use
of “joints” which provide only unilateral kinematic constraint. For example, in the domain of
automated manufacturing, parts feeders typically have rigid protrusions that interact with parts as
they stream by. The protrusions reorient parts, but occasionally jam (see Figure 1.) In assembly

Figure 1: The exit orientation of the cup-shaped part must be with the curved portion down,
regardless of the entering orientation [1].

applications, fixtures are designed to hold parts in precise positions and orientations relative to
each other and a reference frame. If a part comes to rest undetected before fully engaging the
fixture, subsequent operations on the fixtured parts may not meet design specifications and may
not be recognized until the completed product fails an inspection test.

Well-designed parts-feeding systems can save a significant portion of operating costs, while
increasing quality and throughput. However, due to a lack of general, efficient software packages
for simulating and analyzing systems with unilateral contacts1, current design methods are error
prone and inefficient. Further, when a design fails, there is no way to analyze it to determine if a
simple modification could correct the problem.

This paper represents a step toward the development of improved engineering design tools for
mechanical systems with unilateral contact. Following in the footsteps of Lötstedt and others who

1Adams, DADS, Solid Works, and Working Model are some of the best available software packages, but they
all have shortcomings in terms of generality and in identifying situations where the rigid body assumption leads to
nonuniqueness.
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have popularized the use of complementarity methods in rigid body dynamics [7, 8, 11], we extend
the model developed formally in [15] to include a frictional moment (transmitted about the contact
normal). While it is not possible to transmit such a moment through a point contact (as would
occur generically between curved rigid bodies), we include it in our model in recognition of the fact
that contacts between stiff real bodies are distributed over small patches [6] and that the friction
forces obey the maximum work inequality [5]. While in principle, the geometries of the contact
patches could be arbitrary, the supporting empirical data presented in [6] and the leveraged theory
in [5] assumed that contact patches were planar. Thus we include that assumption here.

The main contribution of this paper is a set of new existence and uniqueness results that
provide strict theoretical guidelines for the use of our model in the analysis of multi-rigid-body
dynamic systems with multiple distributed unilateral contacts. A secondary contribution is the
demonstration that time-stepping methods can be used to accurately simulate such systems.

2 The Model

The derivation of our mathematical model describing the motion of a system of rigid bodies with
locally planar, finite areas of contact is analogous to the model with isolated point contacts devel-
oped previously [15]. Therefore, in this paper, we will only detail the extension to include frictional
moments in the directions of the contact normals at the distributed contacts. Our model consists
of several sets of equations and inequalities enforcing the Newton-Euler equations of motion, kine-
matic nonpenetration constraints, and a dry friction law satisfying the maximum work inequality.
When formulated at the current time, the solution to these equations and inequalities yields the
accelerations of the bodies, the contact forces and moments, and the qualitative contact changes
(e.g., contact separation or conversion from rolling to sliding). Integration of the accelerations over
time yields the motion of the system.

We begin by assuming that there are a number of rigid bodies, each composed of a finite number
of features (e.g., surface patches, edges between the patches, and vertices formed by the intersections
of edges). The positions and orientations of the bodies are represented by the tuple q. Given a
feature on each of two bodies, one can derive a distance function ψn(q) that is positive when the
two features are separated, equal to zero when the two features are in contact, and negative when
the two features interpenetrate. The nonpenetration constraint on the ith feature pair is thus:

ψin ≥ 0, ∀ i = 1, . . . , nc,

where nc is the number of contact points. Since the dynamic equations are expressed in terms of
accelerations, a contact is assumed to exist only if ψin = 0 and the normal component of relative
velocity, vin = (∇qψin)

T q̇ = 0, where ∇qψin is the gradient of ψin with respect to the configuration
variable, q. If in addition, the normal component of relative acceleration, ain, of the contact point
as it moves across the two bodies is zero (positive), then the contact is assumed to be maintained
(breaking) (see [11]).

We also must precisely distinguish between sliding and rolling. Let vit and vio denote two
orthogonal components of relative velocity in the contact tangent plane at contact i, and vir denote
the relative angular velocity about the normal of contact i. If any one of these three relative
velocity directions is non-zero, then the direction of the generalized contact force is completely
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specified (see equation (2)). If all three relative velocity components are zero, then the components
of the generalized friction force are unspecified by the current state, and so must be revealed by
the solution of the model, specifically by the relative contact acceleration (again, see equation (2)).
Therefore, it is convenient to define the index sets R and N , respectively, as the sets of rolling and
non-rolling contacts; these two index sets partition {1, . . . , nc}. The intuition behind the selective
use of velocities and accelerations in the formulation of the friction law is as follows. In the case
of a non-rolling contact, the friction direction is already known, so the only unknowns are the
normal components of contact force and relative acceleration. If contact is maintained at the end
of the current time step (indicated by ain = 0), then non-rolling with constant relative velocity was
implicitly assumed. In the case of a rolling contact, the only way to indicate changes from rolling to
non-rolling is through non-zero values of the relative accelerations components, which imply yield
non-zero relative velocities that determine the direction of the generalized friction force.

Before introducing the complete model below, we must first introduce several quantities. The
contact velocity components expressed in the contact frames will be denoted by ν = (νn,νt,νo,νr),
where each subvector is defined as να = (v1α, v2α, . . . , vncα) for α = {n, t, o, r}. For example, νn
is the vector of normal components of the relative velocities at the contacts. Further, denote the
positive definite system inertia matrix and system constraint Jacobian as M and J , respectively.
The inertia matrix relates forces and moments to body accelerations, while the Jacobian relates the
body velocities to the relative contact velocities. The unknowns of the model will be the vectors of
relative accelerations and contact forces and moments. Following the convention used to define ν,
these are denoted by (an,at,ao,ar) and (cn, ct, co, cr), respectively. The subscripts t and o refer
to the two tangential components of the relative linear accelerations or forces at the contacts, while
the subscript r refers to the relative angular acceleration or contact moment in the direction of the
contact normal.

The equations and inequalities mentioned above that constitute the model are naturally parti-
tioned into four sets as follows:

(i) the combined kinematic/Newton-Euler equations of motion,















an

at

ao

ar















= A















cn

ct

co

cr















+















bn

bt

bo

br















,

where A = J TMJ is a positive semidefinite matrix of size 4nc, and (bn, bt, bo, br) = J̇ Tν +
J TM−1gobj is a vector containing the known external forces applied to the system and velocity
product forces; (since M is positive definite, the null space of A coincides with the null space of
J ; in particular, A is positive definite if and only if J has linearly independent columns2)

(ii) the nontensile restrictions on the contact forces, the unilateral kinematic constraints, and the
complementarity conditions on the normal contact forces and accelerations,

0 ≤ an ⊥ cn ≥ 0,

2Note that the restriction of linearly independent columns of J is very stringent, since any pair of bodies with
two or more contacts will violate this condition.
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where the ⊥ notation denotes the perpendicular relation between two vectors;

(iii) the elliptic dry friction condition suggested by Howe and Cutkosky [6] (based upon a series of
contact friction experiments),

c2it
e2it

+
c2io
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+
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2
in, i = 1, . . . , nc, (1)

where eit, eio, and eir are given positive constants and µi is the coefficient of friction (assumed
positive); and

(iv) the maximum work principle: for each i ∈ N ,
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and for each i ∈ R,
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where argmax {f(x) : x ∈ X} denotes the set of optimal solutions of the maximization problem:

maximize f(x)

subject to x ∈ X.

By formulating the above maximization problem with Lagrange multipliers as an unconstrained
problem and deriving the “Fritz John” optimality conditions, the maximum work principle (condi-
tions (iv) above), can be replaced by the following equivalent system of equations:
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∀i = 1, . . . , nc; (2)

where

(σit, σio, σir) =

{

(vit, vio, vir) if i ∈ N ,

(ait, aio, air) if i ∈ R.

In order to handle other kinds of dry friction laws, we introduce a generalized model in which
we replace the quadratic friction cone defined by (1) by an abstract closed convex cone and modify
the maximum work inequality accordingly. Specifically, for each i = 1, . . . , nc, let Fi : R+ → R3 be
a set-valued map with the property that for each scalar σ ≥ 0, the image Fi(σ) is a closed convex
cone in the 3-dimensional Euclidean space R3 and that Fi(0) = {0}. The latter property of Fi
stipulates that at each contact, if the normal force is zero, then so is the friction force and the
transmitted moment.
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Consider the following generalized friction conditions:

(iii)′ for each i = 1, . . . , nc, (cit, cio, cir) ∈ Fi(µicin);

(iv)′ the maximum work principle: for each i ∈ N ,
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The generalized dynamic multi-rigid-body problem with concurrent distributed frictional contacts
is to find contact forces (cin, cit, cio, cir) and accelerations (ain, ait, aio, air) satisfying conditions (i),
(ii), (iii)′, and (iv)′.

Examples of Fi(σ) include (a) the elliptic cone (1):

Fi(σ) ≡

{

(cit, cio, cir) ∈ R
3 :

c2it
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+
c2ir
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≤ σ2

}

,

where eit, eio, and eir are some given positive scalars; (b) approximations of such a cone by a convex
polyhedron:

Fi(σ) ≡

{

(cit, cio, cir) ∈ R
3 : αijcit + βijcio + γijcir ≤ σ, j = 1, . . . ,mi

}

,

where αij , βij and γij are some given scalars and mi is a positive integer; and (c) mixtures of elliptic
and polyhedral friction constraints: e.g.,

Fi(σ) ≡

{

(cit, cio, cir) ∈ R
3 :

c2it
e2it

+
c2io
e2io
≤ σ2, |cir| ≤ σ

}

.

For planar problems, we can let

Fi(σ) ≡ {(cit, 0, 0) ∈ R
3 : |cit| ≤ σ}.

Examples (a) and (c) pertain to axi-symmetric friction laws; whereas (b) do not necessary corre-
spond to such laws. Other axi-asymmetric friction laws can also be modeled by using the friction
map Fi.

3 Existence and Uniqueness of Solutions

Employing a unified approach, we provide sufficient conditions for the existence and uniqueness
of solutions to the basic model presented in the last section. Similar results can be established
for variations of this model, such as those based on the abstract friction maps Fi. Due to space
limitations, we will focus our discussion on the basic model under the quadratic dry friction law
with torsional friction.
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Let F consist of all force tuples (cn, ct, co, cr) such that cn ≥ 0,
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FJ ≡ F ∩ null space of J .

The main result of this paper is summarized in the following theorem.

Theorem 1 Let A ≡ J TMJ with M being symmetric positive definite.

(A) If A is positive definite, then there exists a scalar friction bound µ̄ > 0 such that whenever
µi ∈ [0, µ̄] for all i ∈ N , there exist

(an,at,ao,ar) and (cn, ct, co, cr)

solving the rigid-body contact model defined by conditions (i)–(iv). If in addition µi ∈ [0, µ̄]
for all i ∈ R, then the solution is unique.
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then for any positive {µi : i = 1, . . . , nc}, the first conclusion of (A) holds.

The conditions in the two statements (A) and (B) of the theorem are different. The conditions
in (A) require the entire matrix A be positive definite and the friction coefficients at the non-rolling
contacts be small; in this case if the friction coefficients at the rolling contacts are also sufficiently
small, then the solution must be unique. A theoretical estimate for the friction bound µ̄ can be
computed as discussed in [15]. Such an estimate tends to be very conservative and can be expected
to be much smaller than one would expect to encounter in real systems.

Part (B) pertains to the all-rolling case. In this case, there is no condition imposed on the
friction coefficients; also A is not required to be positive definite. The proofs of Theorem 1 are
straight forward extensions of those in the papers [10, 15]; background results needed in the proofs
are in [2, 4].
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4 Example Problems

Two simple multi-rigid-body systems were simulated using two different time-stepping methods;
a first-order, explicit method (referred to as the Stewart method [13]) based on forward Euler
time-stepping and a linearized dynamic model, and a first-order, implicit method (referred to as
the Tzitzouris-Pang method [17]) based on backward Euler time-stepping and the full nonlinear
dynamic model. While both of these methods have been reformulated around more accurate time-
stepping schemes, the comparison presented here is limited to the Euler methods.

To apply the Stewart method one approximates each friction cone as a convex polyhedron in
the space of generalized friction force directions and each active nonpenetration constraint, ψin ≥ 0,
as a linear inequality. After replacing the acceleration and velocity variables with their forward
differences divided by the integration time interval, h, one formulates a linear complementarity
problem (LCP). The solution of this LCP is the contact impulses that guarantee the consistency
of the linearized model and maximum work inequality at the end of the current time interval. The
impulses obtained are then used to compute the corresponding new body velocities and positions,
without ever computing the accelerations. To advance the state another time step, the system is
linearized about its new configuration and another LCP is formulated and solved.3

The Tzitzouris-Pang method (see [17]) retains the nonlinear features of the dynamic model and
therefore leads to a (mixed) nonlinear complementarity problem (NCP) to be solved at each time
step. An implicit time-stepping method was employed in the Tzitzouris-Pang method, because
it was expected that the bulk of the computational work for each time step would be devoted
to the solution of the NCP rather than the implicit equations.4 Similar to the Stewart method,
the subproblems solved in the Tzitzouris-Pang method guarantee consistency with the (nonlinear)
model at the end of the current time interval. One difference between the methods is that the
Tzitzouris-Pang subproblems are constructed by discretizing the nonlinear dynamics model directly,
arriving at an underdetermined mixed NCP. Then this mixed NCP is augmented with equations
representing the numerical integration scheme for the configuration and velocity variables. The
resulting implicit system is a ”square” mixed NCP which is then solved at each time-step via a
Bouligand-differentiable (B-diff) Newton algorithm[3, 9]. For sufficiently small step sizes, using the
previous solution as a starting point for the new NCP was quite effective.

Since the methods were implemented on different platforms and languages (Matlab and C++)
and require the solution of quite different numerical problems at each step, our comparison is limited
to accuracy. While direct cpu time comparisons would not be meaningful, our experience indicates
that the Tzitzouris-Pang method is likely to be faster and more accurate than the Stewart, but
more difficult to implement.

4.1 Problem 1: Sphere on Plane Rotating in Place

Figure 2 shows an elevation view of a uniform sphere in contact with a fixed half-space in a uniform
gravitational field. This example was chosen, because the “surface” constraint in configuration
space is planar. As such, it removed one of the sources of difference between the Stewart and

3The LCPs of the Stewart method were solved using Lemke’s algorithm provided by Michael Ferris, University of
Wisconsin at Madison.

4This expectation was born out in our experiments.
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Tzitzouris-Pang methods. The primary difference between the two methods for this problem then
was the linearization of the friction law.
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Figure 2: Sphere on a Half-Space.

For the sphere/plane problem, the surface of the fixed half-space coincides with the xy-plane
of the (right-handed) inertial frame, with the inertial z-direction parallel to the outward normal of
the half-space. The normal axis, n̂, of the contact frame always points in the inertial z-direction.
The t̂ and ô directions lie in the inertial xy-plane rotated π

4
(R) from the inertial x and y axes. In

addition, the mass matrix, M, the Jacobian matrix, J , the external generalized force, gobj, and
the position of the contact with respect to the center of the sphere (expressed in the inertial frame),
are all constant. Given this information and assuming the sphere has unit mass and radius the
Jacobian and mass matrices and generalized external force can be shown to be:

M =

[

E3 0
0 2

5
E3

]

, J =



























0
√

2
2

−
√

2
2

0

0
√

2
2

√
2

2
0

1 0 0 0

0
√

2
2

√
2

2
0

0 −
√

2
2

√
2

2
0

0 0 0 1



























, gobj =



















0
0

−9.81
0
0
0



















.

Substituting these quantities into the definitions of A and b defined in section 2 yields:

A = J TM−1J =











1 0 0 0
0 3.5 0 0
0 0 3.5 0
0 0 0 2.5











, b = J̇ Tν + J TM−1gobj =











9.81
0
0
0











. (3)

4.2 Problem 1: Experiment 1

In this problem, the sphere was placed on the plane and released with angular velocity normal to
the plane with all other velocity components zero.5 The specific data for this problem was:

initial configuration: q = [0 0 1 | 1 0 0 0]T

initial velocity: ν = [0 0 0 | 0 0 1.962]T

friction parameters: et = eo = 1 er = 0.4 µ = 0.2.















(4)

5Other experiments in which the sphere initially translated can be found in [16].
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where the first three components of the initial configuration represent the position of the center
of the sphere and the last four components are the Euler parameters (or unit quaternion) defining
the orientation of the sphere’s body-fixed frame (origin at the center of the sphere) relative to the
inertial frame. The values [1 0 0 0] indicate that the body axes were initially aligned with those of
the inertial frame. The first and last three components of the generalized velocity, ν, are the linear
and angular velocities, respectively, of the sphere with respect to the inertial frame.

Figure 3 shows the nonlinear surface of the friction ellipsoid in the space of friction directions,
ct, co, and cr, used by the Tzitzouris-Pang method. It also shows the directions (indicated by the
small spheres embedded in the ellipsoid) used to linearize the ellipsoid for the Stewart method.
The columns in Equation (5) correspond to these directions.

−1−0.500.51
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Figure 3: Friction Ellipsoid (equation (1)) for Problem 1, Experiment 1 with cn = 5.

D =

















0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.7071 1.0000 0.4177 −0.2682
0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.4177 0.5264

0 0 0 0 0 0 0 0 0 0
0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.4177 0.5264
−0.7071 −0.0000 0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.4177 0.2682

0 0 0 0 0 0 0 0 0.3227 0.3227

...

...

−0.5835 −0.0924 0.5264 0.4177 −0.2682 −0.5835 −0.0924 0.5264 0.0000 0.0000
−0.0924 −0.5835 −0.2682 0.4177 0.5264 −0.0924 −0.5835 −0.2682 0.0000 0.0000

0 0 0 0 0 0 0 0 0 0
−0.0924 −0.5835 −0.2682 0.4177 0.5264 −0.0924 −0.5835 −0.2682 0.0000 0.0000
0.5835 0.0924 −0.5264 −0.4177 0.2682 0.5835 0.0924 −0.5264 −0.0000 −0.0000
0.3227 0.3227 0.3227 −0.3227 −0.3227 −0.3227 −0.3227 −0.3227 0.4000 −0.4000

















.(5)

Using a time step of 0.07 seconds, the dynamics were integrated for approximately 1.2 seconds of
simulated time using the Stewart and Tzitzouris-Pang methods. Both methods returned identical
results. From the symmetry of the problem, one can see that the sphere should rotate in place
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with constant deceleration to zero. Therefore, the plot of vr(t) = ωz(t) should decrease linearly
from its initial value to zero. Figure 4 shows the analytical solution for the ωz as a fine dotted
line of slope equal to -1.962. The squares on that line are the values of ωz predicted by the time-
stepping methods, while the circles on the horizontal axis are the values of the other 5 velocity
components (all zero) of the sphere. Since the form of ωz(t) implied by the time-stepping methods
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Figure 4: Numerical vs. Analytical Ve-
locities for Problem 1, Experiment 1.
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Figure 5: Numerical vs. Analytical
Forces for Problem 1, Experiment 1.

is piecewise linear between the solution points, only in the time step from t = 0.98 to t = 1.05 did
the analytical and numerical solutions disagree. This mismatch was due to the fact that the time
at which spinning stopped did not appear in the sequence of times used for integration. It should
also be noted that the Stewart method matched the exact solution, only because one of the friction
directions (column 20, in equation (5)) corresponded to the exact solution, thereby eliminating the
friction linearization error.

Consistent with the velocity plot, the friction force plot in Figure 5 shows good agreement
between the numerical and exact solutions. While not shown, the normal component of the contact
force, cn, was equal to mg for all time. The tangential components of the contact force, ct and co,
plotted as circles connected by solid line segments, were zero as expected. The torsional component
of the contact force, cr, plotted as a circles connected by dashed line segments, shows the prediction
error clearly in the time step containing t = 1.0. However, despite this error, the total frictional
impulse was correct since the sphere stopped spinning. Again, the Tzitzouris-Pang and Stewart
methods produced identical force values at the times of evaluation.

Since the direction of the friction moment was known a priori to be constant and in the −z-
direction for all time in this problem, it was possible to rerun the problem with only that friction
direction in the matrix D, so that all LCPs solved in the Stewart method were of size 3 rather than
22. However, when the initial conditions were changed to include translational velocity components
parallel to the plane, the sphere translated indefinitely (due to the lack of a friction force to resist
translational slipping). While such an example is physically unreasonable, it demonstrated that
friction linearization and the Stewart method can be easily used to model the behavior of systems
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with unusual anisotropic friction behavior.

4.2.1 Problem 1: Experiment 2

The Stewart method was applied to the same problem again, but with the set of friction direction
vectors shown in Figure 6; none of which pointed in the direction of the exact generalized frictional
force. The misalignment of the friction directions effectively reduced the frictional moment and
led to slower deceleration of the spinning sphere (see Figures 7 and Figures 8; the dotted black
line represents the exact solution.) Notice that while the friction work rate was reduced, the total
torsional impulse delivered to the sphere was identical to that predicted analytically. However, the
impulses delivered in the t and o directions was not quite zero, leading to a very small residual
velocity after spinning stopped.
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Figure 6: Friction Ellipsoid for Problem 1, Experiment 2 with cn = 5.

D =

















0.3410 −0.4659 0.1248 0.3410 −0.4659 0.1248
0.3410 0.1248 −0.4659 0.3410 0.1248 −0.4659

0 0 0 0 0 0
0.3410 0.1248 −0.4659 0.3410 0.1248 −0.4659
−0.3410 0.4659 −0.1248 −0.3410 0.4659 −0.1248
0.3504 0.3504 0.3504 −0.3504 −0.3504 −0.3504

















. (6)

4.3 Problem 2: Sphere on Spherical Surfaces

Figure 9 shows a small sphere of unit radius in simultaneous contact with two large, fixed spheres.
The sphere of radius 10 is centered at the origin of the inertial frame, while the origin of the sphere
of radius 9 is located at the point, (0, 11.4, 0). The small sphere began at rest, but under the
influence of an external force (gobj = [1.0 2.6 − 9.81 0 0 0]T ) that drove it rolling and sliding
along the seam between the two fixed spheres. This particular example was chosen because the
contact constraints in configuration space were nonlinear and because there were two simultaneous
contacts. Therefore, in comparing the two time-stepping methods, we expected to see the effects
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Figure 7: Numerical vs. Analytical Ve-
locities for Problem 1, Experiment 2.
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Figure 8: Numerical vs. Analytical
Forces for Problem 1, Experiment 2.

of linearizing the friction model and of linearizing the distance functions ψin, i = 1, 2. In addition,
since these contacts converted from rolling to sliding to breaking, solution by differential algebraic
equation methods would have been awkward.

The data used for this experiment were:

initial configuration: q = [0 6.62105263157895 8.78417110772903 | 1 0 0 0]T

initial velocity: ν = [0 0 0 | 0 0 0]T

friction parameters: et = eo = 1 er = 0.3 µ = 0.2

(7)

The friction linearization for the Stewart method used the same 20 directions shown in Figure 3.
Thus, the LCPs were of size 44 for two contacts or of size 22 for one.

The motion of the moving sphere was simulated by both methods using a time step of 0.1.
Figures 10 and 11 show the velocities of the moving sphere and the forces at one contact predicted
by the Stewart method. Note the nonsmoothness of the velocity components that become obvious
at t ≈ 2. These discontinuities are due to the fact that even though the linear nonpenetration
constraints were satisfied at the end of every time step, the nonlinear constraints were violated. As
the speed of the moving sphere increased, the penetrations became larger, causing the method to
predict large impulses, that ultimately caused the moving sphere to bounce back and forth across
the gap until contact was lost permanently at t ≈ 3.6.

The Tzitzouris-Pang method, using h = 0.1, produced considerably smoother results (see Fig-
ures 12 and 13). This experiment was rerun using the Stewart method in an attempt to obtain
comparable results. For each run, the step size was reduced by a factor of 3. At h = 0.0012,
the unstable bouncing phenomenon disappeared and, despite the linearization, the force and state
trajectories agreed well with those produced by the Tzitzouris-Pang method. However, differences
in the contact forces, shown in Figure 14, caused noticeable differences in the velocities beginning
at t ≈ 2 in Figure 15.
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Figure 9: Small Sphere in Contact with Two Large Fixed Spheres.

This experiment also highlighted somewhat unexpected behavior of the Stewart method in the
force plots as the step size shrank toward zero. Figure 16 shows chattering of the torsional friction
force amidst otherwise smooth behavior of the state trajectories. This was not brought about by
any apparent physical phenomena. Rather, it appears to have been purely numerical and worsened
as the step size was reduced beyond h = 0.0012.

5 Conclusion

We have formulated the dynamic equations of a general, spatial, multi-rigid-body system with
multiple distributed contacts as a complementarity problem, and provided two sufficient conditions
for solution existence and uniqueness. The first condition guaranteeing solution existence requires
linear independence of the columns of the system Jacobian and constrains the maximum coefficient
of friction at the non-rolling contacts. If the coefficients of friction at the rolling contacts are
also small, then the solution is unique. The second condition guaranteeing existence pertains to
problems in which all contacts are initially rolling (without twisting). It is important to note that
the latter condition does not restrict the coefficients of friction.

We have also simulated two simple problems using an explicit method with a linearized model
and an implicit method with the nonlinear model. The results have shown the practicality of the
nonlinear method and highlighted the importance of retaining the nonlinear features even for very
simple problems. While the Tzitzouris-pang method is more difficult to implement, it’s ability to
take large time-steps in problems with significant nonlinearities should not be under-appreciated.
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Figure 10: Velocities of the Moving
Sphere: Stewart Method, h = 0.1.
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Figure 11: Forces at One Contact: Stew-
art Method, h = 0.1. The normal force
component at this contact and all the
force components at the other contact be-
haved similarly.

There remain a number of open questions. On the theoretical side, we have not yet developed
an efficient procedure for determining the friction bound, µ̄. More generally, an algorithm to
determine solution uniqueness is desirable (in some situations) as a means for delineating the
domain of applicability of the multi-rigid-body model. Last, there is a need to develop existence
and uniqueness conditions for general situations characterized by a system Jacobian without full
column rank. In the area of time-stepping methods, it would be desirable to establish similar
convergence results for the Tzitzouris-Pang implicit method as Stewart did for the implicit version
of his algorithm [12].
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Figure 16: Chattering Phenomenon of cr for h = 0.0004.
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