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Abstract

Planning the motion of bodies in contact requires a model of contact mechanics in
order to predict sliding, rolling, and jamming. Such a model typically assumes that
the bodies are rigid and that tangential forces at the contacts obey Coulomb’s law.
Though, usually assumed to be constant, the static and dynamic coefficients of friction
vary in space and time and are difficult to measure accurately. In this paper, we study
a quasistatic, multi-rigid-body model for planar systems, in which the coeflicients of
friction are treated as independent variables. Our analysis yields inequalities defining
regions in the space of friction coefficients for which a particular contact mode (i.e., a
particular combination of sliding, rolling, or separating at the contacts) is feasible. The
geometrical interpretation of these inequalities leads to a simple graphical technique
to test contact mode feasibility. This technique is then used to generate a nontrivial
example in which several contact modes are simultaneously feasible. Despite model
ambiguity, there are factors which argue in favor of using a quasistatic, rigid-body
model. This point is highlighted by the successful application of our results to the
planning of two manipulation tasks.



1 Introduction

Planning whole-arm manipulation, assembly, and other contact tasks to be carried out by
robotic systems involves predicting the motions of systems of bodies with multiple points of
contact. The positions and orientations of some of the bodies (the links of the manipulator)
are actively controlled while the other bodies (the workpieces) move only in response to the
motions of the actively controlled bodies. The goal of planning is to determine a sequence
of manipulator motion and force commands which, if executed, would achieve a prespecified
relative arrangement of all the bodies (e.g., a new grasp or completed assembly). In general,
achieving this desired arrangement requires the commanded actions to take advantage of
sliding, rolling, and separating at existing contacts, and the establishment of new contacts.
Therefore the model employed by such a planner must allow for the possibility of sliding and
rolling at every contact in the system. We study such a model here.

Given the goal of developing a planner for the class of systems outlined above, one is faced
with a difficult modeling decision. If the bodies are assumed rigid and the friction forces obey
Coulomb’s Law, then the motion of the system cannot always be uniquely predicted (see
for example see [2, 13, 24]). If, on the other hand, the bodies are assumed to be compliant,
then the motion of the system and the contact forces can always be uniquely predicted
[11, 43]. This feature is desirable when it comes to simulation and planning. However,
predictions rely on estimates of the effective compliance and friction coefficients at each
contact. The compliance coefficients can be determined through finite element analyses, but
due to the computational demand, one would not want a planner to have to perform finite
element analyses for each (significantly different) system configuration considered during
planning. In addition, if the compliance values do not reflect those of the real system,
motion prediction could be erroneous and lead to plans which fail for no apparent reason.
Therefore, we advocate modeling the bodies as rigid. While it is true that the assumption
of rigidity is simply an assumption of zero contact compliance, we prefer this assumption
to other choices, because it has been used to produce plans which agree with the observed
gross behavior of multibody systems and less computation is required to predict the system
motion (see [3, 5, 8, 9, 10, 16, 17, 18, 21, 28, 29, 40, 44| for examples).

Given that a multi-rigid-body model is to be used, the question remaining is whether
or not to model dynamic effects. This choice is task dependent. If the task is to be done
as quickly as possible, dynamic effects must be included. If not, a quasistatic model, one
which ignores inertial forces, may prove a viable alternative. An advantage of choosing a
quasistatic model is that planning is less time consuming. This is true, because the dynamic
model depends on velocities appearing in the Coriolis and centripedal acceleration terms.
Therefore the dynamic model is sensitive to the magnitudes of the velocity variables. In an
approximate cell-decomposition approach the space of velocity variables must be discretized.
While this discretization does not necessarily have to be fine [34], some discretization that
captures the system’s sensitivity to velocity must be used.

A second discretization of the velocity space is implied by the dependence of the contact



forces on relative velocities at the contacts. For each possible set of maintained contacts
(this set is not known a priori), one must divide the velocity space into regions correspond-
ing to all possible combinations of leftward or rightward sliding or rolling at each contact.
This discretization, when superimposed on the first, yields even more cells than either dis-
cretization alone. The advantage of using a quasistatic model is that the first discretization
is unnecessary. Then, having generated a path based on a quasistatic model, an appropriate
execution speed for the path can be determined by using a dynamic model and dynamic
time-scaling techniques similar to those applied in [30] and [34].

In this paper, a quasistatic, planar, multi-rigid-body model allowing sliding and rolling
at multiple frictional contacts is explored. Since the coefficients of friction in real systems
are sensitive to load and difficult to control factors, such as dirt and moisture in the contact
interfaces [23], the quasistatic model is studied with particular attention paid to gross varia-
tions in its solutions as a function of the coefficients of friction at the contacts. The friction
model can be viewed as Coulomb’s Law with friction coefficients varying in space and time.

The contributions of this paper are: (1) a set of mathematical conditions under which
our model is most useful, (2) a procedure for partitioning the joints of the manipulator into
position- and torque-controlled subsets, and (3) the derivation of analytical relationships
defining regions in the space of friction coefficients in which the model predicts a particular
contact mode or set of contact modes, where a contact mode is the association of a specific
interaction (sliding, rolling, or separating) with each contact point. These contributions in
concert with our examples of manipulation using sliding and rolling contacts lead to a better
understanding of quasistatic multi-rigid-body models.

2 Background

This paper focuses on the formulation and solution of a general quasistatic model of rigid,
planar, whole-arm manipulation systems, so that it may be used effectively in future research
on planning tasks involving contact. Therefore, the ensuing discussion is organized in a way
which, first, emphasizes different aspects of quasistatic and dynamic multi-rigid-body models,
and second, relates previous work in manipulation planning to the corresponding aspects of
these models.

2.1 Quasistatic vs. Dynamic Contact Problems

The dynamic multi-body contact problem is to determine the motion of a system of bodies
in contact given the state of the system (the positions and velocities of all the bodies) at the
time of interest. The goal is to determine the accelerations of the bodies and the force at each
contact. Usually one formulates the equations of motion of the bodies, the nonpenetration
constraints (initially written in terms of the positions of the bodies), and a friction law at



the contacts. This results in a system of differential algebraic equations and inequalities in
the contact forces and the accelerations of the bodies (for example, see [2, 13, 37]). Next
one differentiates the nonpenetration constraints twice with respect to time to write them
in terms of the system’s unknown accelerations. Finally, the resulting system of equations
and inequalities is solved for the accelerations and the contact forces, taking into account
the complementary nature of contact forces and relative contact accelerations and velocities
(i.e., when a contact separates, the contact force must be zero, ete.).

Notice that in the dynamic problem, the nonpenetration constraints are differentiated
twice; just enough times to write them in terms of the highest order time derivative appearing
in the Newton-Euler equations. Quasistatic contact problems have been solved analogously,
but the quasistatic assumption leads to a fundamental difference. Since inertial forces are
neglected, the Newton-Euler equations no longer contain the accelerations of the bodies.
This means that the highest order derivatives of the body positions are the velocities that
appear in the Coulomb friction constraints. Therefore, the relevant kinematic constraints are
obtained by differentiating the nonpenetration constraints only once. A further consequence
is that the only couplings between the unknown force and motion variables are through
Coulomb’s Law.

The abovementioned fundamental difference between the quasistatic and dynamic multi-
rigid-body models manifests itself in the problem formulations and applicable solution tech-
niques. For example, the three-dimensional, frictionless, quasistatic problem may be for-
mulated as a linear program [41], while the analogous dynamic problem cannot. It can be
formulated as a positive definite linear complementarity problem or equivalent positive def-
inite quadratic program [2]. In the frictional case with sliding and rolling contacts, both
problems become significantly more difficult to solve. The dynamic problem becomes a
nonlinear complementarity problem [25], while the quasistatic problem takes the form of
an uncoupled nonlinear complementarity problem (achieving this form requires a straight
forward extension of the formulation given in [26]).

2.2 Model Indeterminacy and Inconsistency

The dynamic and quasistatic models discussed above both suffer from indeterminacy in
motion prediction, i.e., they can admit several contact modes for a given state and input
even when all physical and geometric parameters are known precisely. Parameter uncertainty
exaggerates this problem. The models can also be inconsistent even when the kinematic
constraints by themselves are not. For example, a rigid rod in one-point contact with a rigid
table can have zero, one, two, or three finite force solutions under the dynamic model [13]
and no solution at all in the quasistatic case. An example of a quasistatic problem with
multiple solutions is discussed in Subsection 4.3.

The predominant approach to dealing with model inconsistencies has been to ignore
them, since they appear to be quite rare [2, 31]. Indeterminacies are more common and have



been dealt with in manipulation planning by delimiting all such situations and then avoiding
them [7]. An alternative is to plan in a way that ensures that the desired goal is reached
despite uncertainty in the exact system motion, which Brost accomplished in two ways [3].
He used energy arguments to plan placing-by-dropping tasks and state transition cones to
plan pushing tasks.

The first planning approach, avoiding indeterminate situations, has motivated several
researchers (most notably Erdmann [7], Rajan et al. [31], and Brost and Mason [4]) to at-
tempt to categorize all situations in which multi-body models are indeterminate. Erdmann
found that the three-dimensional motion of a body in contact with its environment is in-
determinate if the C-space friction cone for a one-contact situation dips below the tangent
plane at the contact point on the C-obstacle in C-space. Also, Erdmann stated (on page 251
of [7]) ...when the edges of the individual friction cones which comprise a composite friction
cone are not coplanar, then a variety of reaction forces can arise in response to an applied
force. Effectively, the distribution of reaction forces among the points of contact is indeter-
minate. Consequently, the resulting motion is ambiguous. However, we warn the reader that
nonuniqueness in the contact force distribution does not necessarily imply nonuniqueness in
the system motion. For example, the acceleration of frictionless systems are unique even
when the contact force distribution is not [14]).

Rajan, Burridge, and Schwartz studied and classified the indeterminate dynamic planar
motion of a single rigid body in contact with two fixed rigid “walls” [31] (Note that in this
paper, the “walls” can move and there can be any number of them). The result was a
simplicial decomposition of the three-dimensional space of external wrenches (a wrench is a
force and moment taken together), with each simplex corresponding to a possible contact
mode. Under certain circumstances, the simplices overlapped, indicating that more than
one contact mode was consistent with the system model. Note however, that the work by
Rajan et al. and Erdmann does not carry over directly to the quasistatic case. This fact was
highlighted by Rajan et al. who refer to a “forthcoming” paper containing the analogous
results for the quasistatic case, but unfortunately that paper was never published. The work
presented here helps to fill the gap left by Rajan et al.

In contrast to the analyses of Erdmann and Rajan et al., Brost and Mason developed a
graphical technique referred to as “moment labeling” [4, 20]. This technique allows one to
easily determine the feasibility of a specific contact mode for a planar body in contact with
any number of points fixed in the environment. In planning situations, moment labeling is
carried out for every possible contact mode to determine the set of lines of action of the
external force for which only the desired contact mode satisfies the model. Then the desired
contact mode can be executed by applying a force from within this set.

The relationship between Brost’s and Mason’s results and ours becomes evident after
specializing moment-labeling to the quasistatic case. The result of applying the moment-
labeling technique is a directed channel through which the line of action of the end effector
force must pass in order to be consistent with the desired contact mode. Brost’s and Ma-
son’s technique identifies the regions outside the channel, whereas our technique identifies the



inside of the channel. Despite the equivalence of our analytical approach and their graph-
ical approach, it would be impractical to derive the moment-labeling approach from our
analytical results. However, graphical moment-labeling is limited to planar systems, while
our analytical approach can be extended in a straight forward manner to three-dimensional
systems with multiple workpieces.

2.3 The Utility of Quasistatic Models

Mason [19] and Peshkin [27] proposed that the “scope” of quasistatic models be delimited by
the ratio of the moment of inertia of a pushed object to the square of the pushing velocity.
However, since their results are not readily extensible to spatial systems or general planar
systems, we take a different view, which we refer to as quasistatic model utility.

We view the failure of the quasistatic model in the case of the rigid rod in one-point
contact with a table, as a result of the equilibrium equation’s requirement that the external
wrench applied to the rod (i.e., force and moment) be a member of a lower-dimensional subset
of the space of all wrenches. In the rigid rod problem, the quasistatic model can only have
a solution if the line of action of the gravitational force passes through the contact point.
Since it does not, the rod moves dynamically. This observation suggests that quasistatic
analysis will be most “useful” if, in each configuration, the contact forces can balance all
likely external wrenches, so that the system never accelerates. Due to uncertainty in the
system’s physical and geometric parameters, the set of likely wrenches will have the same
dimension as the space of all wrenches.

Now, consider a multi-rigid-body system with multiple contacts that can balance every
wrench in a full-dimensional set of likely external wrenches. Each wrench corresponds to
a different contact force distribution (or set of distributions when the contact forces are
statically indeterminate). The conjecture, which motivates our definition of model utility, is
that as the applied wrench is varied within the set, the contact force distribution changes to
maintain equilibrium.

This sort of quasistatic behavior has been observed and exploited in several previous
studies. In one study by Trinkle and Hunter [39], a polygon was to be reoriented within
a simple planar hand. In every configuration comprising the plan, the contact forces could
balance a three-dimensional set of likely external wrenches, thereby making the plan robust
to uncertainty in the position of the center of mass of the workpiece. No significant dynamic
behavior was observed in experiments [40]. The same characteristics were present in earlier
work done by Trinkle on how to lift a part off of a table top without causing excessive contact
forces between the part and the table top [42].

Lynch’s work on stable quasistatic pushing [16], provides a second example. The problem
he studied was to push a part (called a “slider”) on a horizontal plane in such a way as
to maintain sticking contact with the pusher at two points. In this problem, the specific
wrench to generate a specific slider motion was indeterminate, because the force distribution



between the horizontal support plane and the part was unknown. However, the slider was
to maintain contact with the pusher at two distinct sticking points. This was possible,
because as the slider moved, the varying friction wrench was equilibrated by corresponding
variations of the contact forces between the pusher and slider (within their friction cones).
Therefore, the motion of the pusher uniquely defined the motion of the slider (this behavior
was experimentally verified).

Previous work in “quasistatic” manipulation planning that violates our utility conditions
possess one of the following characteristics: (1) the quasistatic analysis is used initially to
determine an equilibrium configuration after which dynamic analysis is used to determine
the system motion; (2) there are too few contact constraints to maintain equilibrium once
achieved, but the system is dynamically stable; or (3) there are two few contact constraints
to maintain equilibrium, but the system is unstable.

An example of quasistatic analysis followed by dynamic analysis is Simunovic’s work
on planar peg insertion with two sliding contacts. He found that for insertion to proceed
quasistatically, the external force (applied by the manipulator to the peg) had to pass through
the point of intersection of the contact forces applied by the hole [38]. Since control errors
and uncertainty make the application of such a force impossible, Simunovic up-graded his
model to a dynamic one to determine his main result; a recipe for choosing the direction
and line of action of the applied force to guarantee acceleration into the hole. Note that the
quasistatic assumption required the external wrench to lie in a two-dimensional subset of
the wrench space, while the conditions found with the dynamic model allowed the external
wrench to be chosen from a three-dimensional subset. Nonetheless, the quasistatic result
was important, because it defined the boundary between applied wrenches that would cause
acceleration into the hole and those that would cause jamming.

An example of a dynamically stable system gainfully analyzed through a quasistatic
model is Peshkin’s fence layout planning for conveyor-belt parts-orienting systems [28]. In
this sort of system, a part will typically develop two sliding or one rolling contact with a
fence. Thus it is only possible to balance a two-dimensional subset of the three-dimensional
space of wrenches that could be applied to the part by the conveyor belt. However, in the
real system, parts were observed translating at a constant speeds with two contacts sliding
along the fence. The motion was quasistatic, because perturbations in the velocity of the
part along the fence were resisted by the belt and perturbations away from the fence were
removed since the belt had a component of velocity toward the fence. Other similar useful
quasistatic analyses of dynamically stable systems include the squeeze-grasping work of Brost
[3] and Goldberg [10], the fixture insertion of Schimmels and Peshkin [36], and Whitney’s
reformulation of previous peg-in-hole work leading to the design of the RCC device [44].

Examples of unstable system productively analyzed through a quasistatic model are
Mason’s and Peshkin’s early work on planar pushing with one contact [18, 27]. We classify
such pushing actions as unstable, because as the slider is pushed, it does not maintain
its relative position with respect to the pusher. Nonetheless, such problems can benefit
from quasistatic analysis, because friction effects dominate inertial forces. The experimental



results of Mason and Peshkin clearly show that the quasistatic analysis is still useful in these
situations, but the information content of the results is diluted. For example, in Lynch’s
stable pushing work, discussed above, the pusher trajectory completely determined the slider
trajectory, whereas with one point pushing, the slider trajectory could only be bounded.

2.4 Paper Layout

In Section 3, our quasistatic model is presented along with an approach to solving it based on
contact modes (i.e., various combinations of sliding, rolling, and separating at the contacts).
We also introduce conditions for model utility and a technique to decide the control modes
of the joints of the manipulator. In Section 4, regions of the space of friction coefficients
(p-space) for which different contact modes are feasible are defined as inequalities of rational
functions in the coefficients of friction and a graphical interpretation of the inequalities is
presented. We then discuss a nontrivial configuration for which three distinct contact modes
are simultaneously feasible. In Section 5, two examples of our quasistatic analysis are studied.
In the first example, we show how our analysis can be applied to a system with nonconstant
coefficients of friction. The second example contains configurations for which the quasistatic
model is ambiguous. However, for that specific example, we show how the ambiguity can
be resolved by the proper control of internal forces. Finally, in Section 6, conclusions and
suggestions for future research are given.

3 Problem Formulation

A rigid laminar body of arbitrary shape (the workpiece) moves quasistatically in a plane due
to frictional contact with one or more actively-controlled, rigid, laminar bodies. The actively
controlled bodies can be viewed as the links of a manipulator composed of any number of
serial and branching kinematic chains. The joints are either revolute or prismatic. The
manipulator and the workpiece are collectively referred to as the system. We assume that:

1. The positions, orientations, and geometries of all bodies are known.
2. The bodies are rigid and restricted to move in a plane.

3. The external wrenches applied to all the bodies in the system (other than those due
to contacts) are known.

4. The kinetic energy of the system and all dynamic effects are negligible.

5. Each joint may be position- or effort-controlled; effort control implies force control of
a prismatic joint and torque control of a revolute joint.



6. The friction forces at the contacts are Coulombic in nature with unknown, possibly
different, coefficients.

Then, given the instantaneous velocities of a subset of joints and the efforts applied at
the remaining joints, our goal is to determine the instantaneous velocity of the workpiece
satisfying the quasistatic model. We would also like to determine the contact forces and the
unspecified joint efforts and velocities. Finally, we want to show how the solution depends
on the coefficients of friction at the contact points.

To formulate the governing equations, a “world” frame may be chosen arbitrarily. For
convenience, we choose it so that its origin coincides with the center of gravity of the work-
piece (see Figure 1). One contact frame is assigned to each contact point and is positioned

WORKPIECE

Figure 1: Workpiece in Contact with Manipulator

with its origin at the contact point and with its “n”-axis, fi;, aligned with the contact normal

(pointing inward with respect to the workpiece), its “t”-axis, t;, aligned with the contact
tangent such that the cross product of n; and t;, points out of the plane of motion.

Let the vector ¢; = [cin cit]T represent the force applied to the workpiece at the "
contact such that ¢;, and ¢;; are the normal and tangential components, where T indicates
matrix transposition. The vector ¢; is known as the wrench intensity vector [35] of the 7"
contact. The wrench matrix, W;, transforms the ¢** contact force into the world frame. In
the planar case, W; is defined as follows:

A

n; t;

Wi = [win wid] = [r»@ﬁ» r; @t

] s Vee{l,...,n.} (1)
(3%2)

where 1, t;, r; are all expressed in the world coordinate frame, r; is the position of the 7%
contact point, the @ operator applied to two vectors, [a1, az]®[by, bs], is defined as a1b; —azby,



the subscript (3x2) indicates the dimension of the matrix, and n. is the number of distinct
contact points.

Let g.;; be the external wrench applied to the workpiece; it includes all forces and
moments not applied at the contact points whose normals lie in the plane of motion. Thus
gob; can include wrenches resulting from gravity and sliding contact with a supporting plane.
Summing all the wrenches yields the equations of equilibrium:

We + gobj = Wncn + Wtct + gobj = 0 (2)

where W and c are known as the global wrench matrix and the global wrench intensity vector
[12] and have dimensions (3 X 2n.) and (2n. x 1), respectively. The normal and tangential
wrench matrices, W,, and Wy, both of dimension (3 X n.), are formed by the horizontal
concatenation of all the individual normal and tangential contact wrenches w;, and wy
(defined in equation (1)). Correspondingly, the normal and tangential wrench intensity
vectors, ¢, and c¢;, both have length n. and are formed by the vertical concatenation of all
the normal and tangential wrench intensity components, ¢;, and ¢;;, respectively.

The manipulator must satisfy its equilibrium equations [12]:
JTC:J,,{CTL‘FJ?Ct =T — 8man (3)

where J is the concatenation of the individual manipulator Jacobians for the points of con-
tact, expressed in their respective contact frames, 7 is the vector of joint efforts, and g4,
is the vector of joint efforts induced by external wrenches acting on the manipulator links.
The partitions J,, and J; are exactly analogous to the partitions W, and W, of the wrench
matrix, W.

The motion of the workpiece is subject to kinematic velocity constraints, the satisfaction
of which implies that the point bodies do not penetrate the workpiece’s boundary. Denoting

sth

the relative linear velocity at the ' contact expressed with respect to the i** contact frame

as v; = [vi, vi]?, then the nonpenetration constraint is given by the following inequality:
vip > 0; Vie{l,...,n.}. (4)

Note that the quasistatic nonpenetration constraint is a function only of system velocities
for the reason given in Subsection 2.1.

Let ¢ = [¢- ¢, ¢s|' represent the linear and angular velocity of the point on the
workpiece coincident with the origin of the world frame, then W14¢ is the linear velocity
of the i** contact point on the workpiece expressed with respect to the ** contact frame
[12]. The linear velocity of the i** contact point on the manipulator may be written as the
product of the Jacobian matrix (excluding the rows corresponding to rotational velocity)
Jin

i ] , [6] and the joint velocity vector, 0, of length ng,
it
(2Xn9)

associated with the point, J; = l

10



the number of joints of the manipulator. Thus the relative linear velocity at the ¢** contact
expressed in the i** contact frame is given by:

WZ-TQ—JZ-@.:W; Vie{l,....n.}. (5)
Writing constraints (4) in matrix form yields:

where J,, was formed by vertically concatenating the rows, j;,, of the individual contact
Jacobian matrices, J;.

The remaining constraints enforce the Coulomb friction model, which for the planar case,
may be written as a system of linear inequalities as follows:

Bc >0 (7)

S L P b ”
7l (@2nex2ne) €t | (znex)

U = diag{p, ..., pn. } is the diagonal matrix of effective coefficients of friction, and I is the

where

(n. X n.) identity matrix. Note that inequality (7) implicitly constrains the contact forces
to be nontensile (i.e., ¢;, > 0; V).

To complete our model, we introduce complementary constraints relating the contact
force components with the relative contact velocity components for the three possible types
of contact interactions:

Rolling contact:

Vin = Vit =0, ¢in >0, —picin < e < picin; Vi€ER (9)

Sliding contact:

vie <0, ¢y = picin :
Vin = 0, ¢in 20, { vie >0, ¢ = —piciy }’ vies (10)
Breaking contact:
Vin >0, ¢,=0, ¢c;=0;, YeeB (11)

where the disjoint sets, R, S, and B, contain the indices of the contacts assumed to be
rolling, sliding, and breaking, respectively.

We now can state the quasistatic motion prediction problem more precisely. Given: (1)
the values of a subset of the elements in the joint velocity vector, é, (2) the values of the
complementary elements in the joint effort vector = , and (3) the relevant geometric and
physical information encoded in W, J, B, g.;, and g4n,. Determine: (1) the velocity of the
workpiece, q, (2) the unspecified elements of the vectors = and é, (3) and, if possible, the
vector of contact force components, c.

11



3.1 A Solution Approach

To find the solution(s) to our quasistatic model, we must check the feasibility of every
possible contact mode. Since each contact may slide, roll, or separate, there are at most
3" (where n. is the number of contact points) contact modes. When n. is large, most of
these contact modes violate the corresponding kinematic constraints, so many modes may
be rejected before computing contact forces and joint efforts. Also, when the manipulator’s
joints are not moving, the right hand term on the left side of inequality (4) becomes zero.
Then the number of contact modes can be shown to be of order n? [20].

Let the selection matrices, Egr, Eg, and Eg, identify the currently considered contact
mode. Each matrix consists of a stack of row vectors, el, of length n., with the " element
equal to 1 and all others 0:

Er=|el | ; VieR Es=|el'|; VieS8S Eg=|el | ; VieB (12
(nrxne) © L s © o)

where ng, ng, and ng are the numbers of contacts assumed to be rolling, sliding, and

breaking, respectively. Note that we have not explicitly separated the cases of leftward and

rightward sliding as some previous authors have. This is because our conditions for model

utility (derived below) imply that the directions of sliding are uniquely determined.

Given an hypothesized contact mode, the corresponding set of “applicable” kinematic
constraints can be written as follows:

Whigq—J,60=0. (13)
The applicable wrench and Jacobian matrices, W} and J, are:
Wir Jnr
wi=| Wi, ; Ja=| Jr ) (14)
Wi ((2np+ns)x3) Jus ((2ng+ns)xng)

where W;CR = ExW! and J,z = ErJ,, with Wiz, W5, J;z, and J,s defined similarly.

n?

The matrices W1, and J;p appearing in the the matrices W% and J4 constrain the relative
linear velocity at the rolling contacts to be zero.

The contacts assumed to be breaking must satisfy the following inequality:
WI,q—J3,50>0 (15)
where W;FB = EBWE and J,.5 = EgJ,,.

The wrench intensity vectors of the sliding contacts are known to lie along the edges
of their respective friction cones. To write these constraints in matrix form, we define the
diagonal tangential directions matrix, =, as follows:

E‘:diag{flw"vfnc} (16)

12



where ¢ = sgn(wiq — ‘]Z,ﬁ), sgn() is the signum function, and w;; and j;; were defined in
the previous section. Given these definitions, the sliding tangential wrench intensity vector
has length ng and is given by:

Cis = —UsEscns (17)

where Cns = Escn, US = EsUEg, ES = EsE.Eg, and Cis = Esct.

Substituting equation (17) into the equilibrium equation (2) yields:
Wycq = (Wa+Wys)ca = —8o; (18)

where W 5 and the applicable wrench intensity vector, c4, are given as:

W#S = [0 — WtSUSES] Cy = CtR . (19)
((ZnR—}—nS)Xl)
Here W5 = W,E% has dimension (3 x ng) and 0 has dimension (3 X 2npg).

Rewriting the manipulator equilibrium equations and Coulomb constraints in terms of
the applicable wrench intensity vector yields:

JLCA = (J£ + JfS)CA =T — Sman (20)
BACA Z 0 (21)

where J ;{S and By are defined as:

Ur Iz O
JZS =0 - J;?FSUSES] Bs=|Ur -1z O ) (22)
0 0 Ig

((27’LR-|—TL5) X (QnR-I—nS))

Here, the dimensions of the submatrices 0 and JL,UsEg of J:{S are (Njns X 2ng) and (njus X
ns), respectively, the matrices Ip and Ig are the ng- and ng-dimensional identity matrices,
respectively, and J1y = JTEL and Ui = ERUEL. Note that inequality (22) constrains the
elements of ¢, to be nonnegative through the friction cone constraints in the upper (2 x 2)
block partition of B4. However, the submatrix Is is needed to prevent elements of ¢, s from
becoming negative, because equation (17) does not guarantee nonnegativity.

3.2 Model Utility and Joint Control Mode Partitioning

The utility of the model formulated above, lies in its ability to accurately predict the qua-
sistatic motion of the system. At the very least, we demand for each possible contact mode,
that the quasistatic model predict the velocity of the workpiece uniquely. As discussed in
Subsection 2.3, this requires that the contact forces be able to balance all external wrenches
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in a three-dimensional set of possible external wrenches. However, we would prefer the some-
what more stringent utility condition that for a given contact mode, the model be able to
predict all of the the contact forces and joint efforts uniquely. In this section, we derive
conditions necessary to meet these utility conditions. However, we recognize that the second
condition, namely, that the contact forces and joint efforts can be uniquely determined, is
overly restrictive in some situations (e.g., Lynch’s stable pushing work [15]). Therefore, at
the end of this subsection, we will indicate how to relax this condition.

Consider first the velocity kinematic relationships corresponding to a given contact mode
(equation (13)). The velocity, q, of the workpiece can be determined uniquely if we can
identify a ((2np +ns) X (2ng + ns)) nonsingular partition, Py4,, of the matrix [W]  —J4]:

Pu, = [Wi = J4ED, J(@nntns)x(2nntns)) (23)

where E]:QAI is a matrix that selects (if possible) the appropriate column(s) of J4. The
solution of the applicable kinematic constraints is then:

i] = _PZ}PAHiII (24)

where Py, = _JAEITDAH? E]:QAH selects all columns of J4 not selected by E]:QAI, Zr =
. A . ;
[qT 0 EIJ;AI]T, and Zir = EPAHG'

Equation (24) provides a partitioning of the vector of joint velocities into input and
output portions based on the requirement that for a given input, q must be unique. Here
zpr is the parition of 0 viewed as input and z; is the output containing q and the remaining
elements of 6. Equation (24) also implies two mathematical conditions necessary for model
utility: first, the number of kinematic equality constraints, 2ng + ng, must be between 3 and
3 + ny, inclusive, and second, the rank of W% must be three.

In order for the solution implied by equation (24) to be kinematically admissible, the
contacts presumed to break (by the choice of the contact mode) must separate. Rewriting
inequality (15) leads to the following constraint on the input vector, z;:

(PnBH — PnBIP;&PAH)iH > 0. (25)

where P, = [WTZCB — JnBE]:QAI] and P,p,, = —JnBE]:QAH

Our second condition for model utility is that we be able to uniquely determine all of the
unspecified joint efforts and applicable wrench intensities. However, taking all elements of ¢4
and 7 as unknown, the equilibrium equations, (2) and (3), are potentially underdetermined.
Partitioning them to identify a nonsingular ((2ng + ns) X (2ng + ns)) submatrix Q4, of
Qu, = [Wh, J4,]" yields the following equations:

comait| _ 5] (26)

_gman] —I' Tr
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— -1 —8obj ‘
T = QAUQAI [ —Eman; + 7 ] + Sman;; (27)
where Qu, = [Wgu JAMESAI]Tv Q4 = EQAHJZ;W 8man; = EQAIgmam 8manr; =
EQAHgman, T = EQAIT7 and 777 = EQAHT- The vectors ¢4 and 777 are uniquely de-
termined by equations (26) and (27) when 7 is given. Therefore, we view 71 as input.

As was the case in the preceeding kinematic analysis, the equilibrium analysis implies
two conditions necessary for model utility. The first one is identical to one implied by the
kinematic analysis, namely, 2ng + ng must be between 3 and 3 + ng, inclusive. The second
condition, which is implied by the nonsingularity of Qg4,, is that the rank of W 4, must be
three.

In order for the solution implied by equations (26) and (27) to be consistent with the
assumed contact interactions associated with the given contact mode, the constraints implied
by the Coulomb friction model given in inequality (21) must be satisfied. Substituting
equation (26) into inequality (21) yields:

_ 0
B QA} [ r

>Bai | 5 23)

mangy

In summary, the above kinematic and equilibrium analyses have identified a partition
zrr of the joint velocity vector and a partition 7; of the joint effort vector as input. In
other words, we have identified a control mode partitioning for the manipulator; the joints
corresponding to elements of 7; and zj; are to be effort-controlled and velocity-controlled?,
respectively. However, for this control mode partitioning to be valid, the sets of joints
corresponding to 77 and z;; must be disjoint and their union must be the set of all joints.
Therefore EpAI and EQAI must be identical.

The conditions for quasistatic model utility are:

3<2np+ns < 3+ny (29)
Rank(W,4) = 3 (30)
Rank(Wy,) = 3 (31)

3 EPA] = EQAI 3 PZ} and QZ} exist. (32)

Clearly, these conditions restrict the number of sets of maintained contacts to be considered
during the solution process to less than 3™ (see Table 1).

As mentioned at the beginning of this subsection, the condition that the contact forces
and joint efforts be determinate can be overly restrictive. For example, the contact forces
are statically indeterminate when there are two rolling contacts between the workpiece and
a link of the manipulator. More generally, the contact forces are statically indeterminate

Velocity control can be accomplished either directly with a velocity-based servo-system or by shaping
the reference input to a position controller.
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when Q4 has a nontrivial null space. In such cases, the above derivation generally follows
the same line, but requires the use of generalized matrix inversion. Relaxing this condition
would impact the mathematical expressions of the utility conditions (29-32). The right-
hand inequality in inequality (29) would no longer apply and both references to Q4, would
be dropped from equation (32) in favor of the constraint that left null space of Q4, have
dimension zero.

In keeping with previous robotics literature, we henceforth refer to control mode par-
titions with at least one effort-controlled joint as compliant control modes and those with
no effort-controlled joints as noncompliant control modes. Therefore, noncompliant con-
trol mode partitions arise when the number of kinematic constraints associated with the
hypothesized contact mode is equal to three (i.e., when 2ng + ng = 3).

4 Decomposition of u-Space

In this section, we analyze all quasistatic contact modes satistying our utility conditions,
equations (29-32). In doing so, we have found it convenient to partition the possible contact
modes according to the numbers and types of contact interactions. Recall that contact
modes for which 2ng 4+ ng is equal to three, are noncompliant modes. These are easiest to
analyze, because the number of kinematic constraint equations is smallest. Also, because
no joints require effort-control, a manipulator capable of noncompliant control is simpler to
implement. For these reasons, we concentrate on the noncompliant contact modes. These
modes must have either three sliding contacts with all other contacts breaking or one sliding
and one rolling contact, all others breaking; we denote these contact modes by 35 and RS.
The compliant contact modes, 2R, R2S, 45, 2RS, R3S, 55, etc., are discussed only briefly.

For a given contact mode, the kinematic and equilibrium requirements for quasistatic
motion are completely specified by equations (24-28). In the following subsections, it is
assumed that the kinematic constraints (24 and 25) are met, so we can focus on the details
of the p-space constraints.

4.1 Regions in p-Space for 35S Modes

The quasistatic contact modes denoted by 35 are most likely to occur when the coefficients
of friction are small. The mode-defining matrices and vectors are:

Qs, =Wy, =(W,5s — W, EsUg) CA = Cyps Bs=1 (33)

Substituting into inequality (28) yields the following system of inequalities in the coefficients
of friction:
B [T i+ Fijni + G
J# J# >
Apapiaps + Bipaps + Baopaps + Bapapz + Cripg + Copg + Csps + D —

0;

CnSi
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Vi€ {1,2,3} (34)

where the coeflicients, A, B;, C;, D, E;, F};, and G;, can be written as determinants of three-
by-three matrices multiplied by up to three nonzero elements of the tangential directions
matrix (see Appendix A for definitions). Thus the analytical expressions for the regions of
a valid 35 motion in p-space are as follows:

Apapaps + Bipaps + Bopaps + Bapaps + Cipn + Copa + Caps + D > 0
Elwi+Y Fijni+Gi>0;  Vie{1,2,3} (35)
i#i i
or

Apapaps + Bipaps + Bopaps + Bapape + Cipn + Copa + Caps + D < 0
Elwi+Y Fijni+G:i<0;  Vie{1,2,3} (36)
i#i i#i

It is important to note that the coefficients of the inequalities, and therefore the 35 regions
in p-space, are dependent on 0 through the elements of the tangential directions matrix,
(see equation (16)). Thus, 3.5 motion of the workpiece in one direction, #, may be possible
for “large” coefficients of friction, while 35 motion in the opposite direction, —@, may only
be possible for “small” friction coefficients.

Figure 2 below shows an arbitrary arrangement of three contacts on a laminar workpiece.
Its shape is arbitrary as long as its boundary contains the origins of the three contact frames
and is tangent to the t axes at those points. The external wrench shown acts through
the center of mass as the gravitational and effective friction forces would if the workpiece
were sliding on an inclined plane; it is assumed to be given by, g; = [0 — 1 0]1. The
linear velocities of the contact points on the manipulator expressed in the contact frames are
assumed to be J10 = [0.920 —0.391]7, 3,60 = [0.928 —0.375]7, and J36 = [—0.931 —0.367]%.
These velocities are shown as arrows labeled, Jié; Vi € {1,2,3}. The wrench matrix is given

by:

W = [Wln Wit Wan, W W3, WSt] =
0.804 -0.595 —-0.707 —0.707 —-0.973 0.232
0.595 0.804 0.707 —-0.707 —-0.232 —-0.973 (37)

1.04 -209 -3.50 -—17.9 14.0 —7.63

Figure 3 shows four slices of the contact mode regions in p-space taken perpendicular to
the ps-axis. The areas in the pq-p2 planes containing the 1’s represent slices of the 35 region.
The areas containing the 2’s belong to the RS region (to be analyzed in the next subsection)
corresponding to contact “1” rolling, contact “2” sliding, and contact “3” breaking. Note
that the 35 region shrinks as the coefficient of friction at the third contact increases, but
the RS region is uneffected, because the only the first and second contacts are involved with
that contact mode.
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The dotted curve with positive slope belongs to both the 35 and RS regions. Thus the
RS and 395 regions are not disjoint; the solution to our quasistatic model is not unique.
However, if we were to modify inequality (9), so that during rolling, the contact force had to
lie strictly within the friction cone, then the dotted curve would be a part of the 35 region
and not the RS region. While this simple fix would resolve the nonuniqueness problem
encountered in this example, in the Subsection 4.3, we discuss an example for which such a
simple fix would not resolve ambiguities.

The areas labeled “Jam” in Figure 3 indicate that no contact mode (with nonzero system
velocity) is feasible. In this particular case, for every contact mode with feasible kinematic
constraints, contact friction prevents the motion. In addition, equilibrium is possible when
the input velocities, Jié, are set to zero.

Inequalities (35) and (36) embody the feasibility of the equilibrium and Coulomb con-
straints given the presumed contact mode. As pointed out by Zeng [45], they also have a
simple graphical interpretation which we paraphrase as follows:

Corollary 1 Assume that there are n.contacts, n. > 3. Consider a set of three contacts and
assume that the kinematic velocity constraints implied by the sliding of those three contacts
are satisfied. Further assume that the matriz, W y4,, is nonsingular. Then it is feasible
that all the three contacts in question slide simultaneously if and only if the following two
conditions are satisfied:

o The direction of the external force must be an element of the negative span of the three
contact forces in question.

o For each set of two contacts, the lines of actions of the external wrench and the other
contact wrench must produce moments of opposite sense about the intersection point of
the lines of action of the paired contacts.

These conditions are analogous to the form closure?* conditions derived by Nguyen [22]
for static planar grasps. However, because the three contacts are sliding, there are only have
three constraining unisense wrenches. Therefore, form closure is impossible. Instead, the
contacts are maintained by the action of the external wrench; the situation referred to as
“force closure” by Reuleaux [33] and Salisbury [35].

Figure 4 illustrates the graphical interpretation of the conditions stated in the Corollary
and embodied in inequalities (35) and (36). It requires knowledge of the lines of action and
the directions of the contact forces, which are known assuming that the joint velocity vector,
0, the coefficients of friction®, and the contact geometry are known.

The assumption that Wy, is nonsingular implies that the lines of action of the three
contact wrenches do not intersect at a point. Therefore, they form the triangle, Apjapasps;.

2Nguyen called this condition “force closure.”
3We assume here, for illustrative purposes only, that the coefficients of friction are known.
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Figure 4: Illustrations of Necessary and Sufficient Conditions for the Existence of a 35
Solution.

There are two qualitatively distinct cases illustrated in Figures 4(a) and 4(b). In (a), the
contact forces do not positively span the plane; in (b) they do.

In the case in which the contact forces do not positively span the plane (see Figure 4(a)),
there always exists a pair of contact wrenches whose lines of action intersect at a vertex of
Apiapa3psr such that they point toward the other vertices. Label these contact wrenches,
wic; and wacy and vertex, pia. The other contact wrench is wses. For 3S mode feasibility,
the Corollary requires the line of action of the external wrench (labeled g.;;) to pass through
the interiors of the segments pa3ps1 and prapss with the line of action directed from pa3psr
to Pizpzs as shown in Figure 4(a). Notice that the positive cone formed by the wrench pair
wycy and wyc; and the pair wscs and g;; “see each other,” satistying Nguyen’s form closure

condition. Also, in this figure, we have shaded the ET and E~ regions produced by applying
Brost’s and Mason’s moment-labeling technique. For the quasistatic contact mode to be
feasible, the external wrench, g.;; must generate a positive moment with respect to ET and
a negative moment with respect to E~. In other words, the line of action of g,;; must pass
through the unshaded channel. Note that our condition for mode feasibility is equivalent to
Brost’s and Mason’s condition found through moment-labeling.

In the case for which the contact forces positively span the plane (see Figure 4(b)), no
pair of the lines of action, intersect such that both point toward other vertices of the triangle.
In this case, the Corollary requires that the line of action of the external wrench create a
moment with respect to every point in the triangle in the sense opposite to that produced
by the three contact wrenches. Nguyen’s technique still applies. Having met our condition,
any pairing of the four wrenches yields two cones whose positive (or negative) spans contain
the apex of the other cone. With regard to the moment-labeling technique, this case results
in only one labeled region; either ET or E~ and that the region is the interior of triangle
Ap1apaaps1- Note again that our conditions are equivalent to Brost’s and Mason’s.
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4.2 Regions in p-Space for RS

The other type of noncomplaint contact mode is the RS mode. For RS modes, we have the
following definitions:

CnR KR 1 0
Qu =Wy, =[w,pg wWin (Wps—EspsWis)] ca1 = | GR Ba=|pr -1 0
CnsS 0 0 1

(38)

where up and pg are the coefficients of friction at the rolling and sliding contacts and &g
is the direction of relative tangential velocity at the sliding contact (see equation (16) for
definition). Again, as in the 35 case, Q42 and c4y are degenerate.

Substituting the definitions (38) into equation (26) yields:

- Cips + Dy A Cops + Dy 5 = Ds (39)
" Aﬂs—I-B’ Aﬂs—I-B’ " Aﬂs—I-B

where the coefficients A, B, C;, and D;, can be written as three-by-three determinants
multiplied by up to three nonzero elements of the tangential directions matrix (see Appendix
B for definitions). Substituting the wrench intensities into the Coulomb friction constraint
(21) yields the analytical expressions for the region of py-space in which the chosen RS contact
mode exists:

A,us + B>0
Ciprps + Dipr — Caps — Dy >0 if D3 >0 (40)
Ciprps + Dipr + Cops + Dy > 0
or
A/LS + B <0
CIHR,US + Dl,MR — CQ/LS — D2 S 0 Lf D3 S 0. (41)

Ciprpes + Dippr + Cops + Dy <0

The graphical interpretation of the RS mode inequalities (40) and (41) can be shown to
identical to that of the 35 mode. However, in the RS case, the contact wrenches of concern
now are those corresponding to the two edges of the friction cone of the rolling contact and
the active edge of the friction cone of the sliding contact.

4.3 Nonuniqueness of Quasistatic System Motion Prediction

Figure 3 illustrated the decomposition of the space of friction coefficients, p-space, into
regions for which the 35 and RS contact modes were satisfied for the example discussed in
Subsection 4.1. On the boundary between the regions, both contact modes were feasible,
but this ambiguity could have been resolved by a minor modification of the requirements
for rolling contact. However, in this section, we present an example problem for which the
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ambiguous regions of p-space cannot be resolved by such a simple fix. This example was
created by using our graphical approach to determining 35 and RS mode feasibility.

Figure 5 shows three contacts and the velocities of the contact points on the manipulator
expressed in the contact frames. These velocities are: J16 = [0.1 0.995]", J,0 = [0.1 —
0.995]%, and J30 = [0.1 0.995]7. Again, g,; is given as: g.; = [0 — 1 0]7. The wrench

matrix corresponding to the arrangement of contacts is:

0.966 —0.259 0.0 —-1.0 —-0.707 —0.707
W = [wy, Wiy Wa, Wy Wi, Wz = | 0.259 0966 1.0 0.0 0.707 —0.707
0.0 —-2.0 024 —-145 0.75 —1.90

(42)

J.0 gObJ ﬁ3

/t\lﬂ/
n
n,

n
contact 1 N 3 9) contact 3

3
N J/ . /t\S
T, J.0

contact 2

Figure 5: Configuration Admitting Multiple Consistent Contact Modes

This contact configuration and set of contact velocities admits four distinct feasible con-
tact modes (35, RySs, RyS51, and R3S7), three of which are simultaneously feasible. The
subscripts indicate which contact rolls and which slides. The other contact breaks.

Figure 6 shows that multiple contact modes are simultaneously feasible over large regions
of friction space. Note that in Figure 6, 1’s, 3’s, 4’s, and 6’s correspond to the modes,
35, R1S53, Ry51, and R3S, respectively. Also, for this set of contacts, the empty region
near the origin is infeasible due to instability, indicating that friction is needed to maintain
equilibrium.

This example leads one to believe that it is common for several contact modes to be
feasible simultaneously over large regions of the parameter space associated with a given
system (not just p-space). This intuition was corroborated during the design of this example.
It was clear from our graphical technique, that small but finite variations in the geometric
and friction parameters and the contact points’ positions and normal directions would still
yield an example with multiple feasible contact modes.
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Figure 6: p-Space Decomposition Showing Multiple Consistent Contact Modes
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4.4 Regions in u-Space for Modes 2R, 3R, ...

All contact modes not yet discussed have four or more applicable kinematic constraints and
are therefore classified as compliant. Of those, the equilibrium equation of the modes with
all rolling contacts are the simplest to map onto p-space, because Wy, is independent of all
friction coefficients as the following definitions show:

n Ur 1 .
W, = Wy = [W,p Weg] cA:[CR] BA:[UR I]. (43)
CtR R —

Assuming that QE exists, ¢4 1s independent of the coefficients of friction. Substituting into
the Coulomb friction constraints gives u-space feasibility constraints as follows:

Cinpti + ¢ 20 Vi€ {l,2,--- ng} (44)
Cintti — €t 20 Vi€ {l,2,--- np} (45)
where ¢;, and ¢;; are the following linear forms in the elements of 7;:
., — SilAG(Qa,)] l —8obj ] (46)
DGt(QAI) —8man; + 71
_ enntil AG(Qar)]rounat —8obj (47)
! DGt(QAI) —8man; + 71

and the vector e; selects the i** row of the adjoint matrix.

Letting np = n. = 2, inequality (44) and (45) defines the regions in p-space for the 2R
modes, which are applicable to two-fingered manipulation tasks. In this case, 77 is a scalar
that can be adjusted to minimize the dependence of the workpiece’s stability on friction.
Abel, Holzmann, and McCarthy studied stable 2R grasps in the friction angle space and
numerically determined curves showing the friction requirements (for stability) as a function
of the internal wrench intensity [1]. The formulation given above is a generalization of their
result to cases with more contacts and relates system stability directly to joint efforts. This
is an advantage, because joint efforts are directly controllable in manipulator.

4.5 Regions in u-Space for Modes 45, 55, ...

Contact modes with more than three sliding contacts and all other contacts breaking have
the same definitions for W, B4, and c4 as the 35 modes (see equation (33)):

WAM = (Wns — WtSESUS) Ca = Cps B, = I7 (48)

but now W4, is not square. The form of the p-space constraints is similar to that of those
derived during the analysis of 35 contact modes. The differences are that the constraints
for the cases with more than three sliding contacts are of higher order (but still multilinear)
in the friction coefficients and they depend (linearly) on the efforts of the effort-controlled
joints.
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4.6 Regions in u-Space for All Other Modes

The mixed compliant modes do not have a simplified form. Thus their analysis requires the
use of the general expressions formulated in Section 3.

4.7 Implementation

Equations (24-28) subject to the utility conditions (29-32), have been coded in ’C’ using
routines from IMSL’s C-base library. Our implementation assumes that some planning agent
has predetermined the control mode partitioning of the joints. As a result, the number of
required contact constraints, 2ng + ng, must be equal to the number of degrees of freedom,
3 + |71|, where |7| is the number of compliant (i.e., effort-controlled) joints. Therefore,
given the number of degrees of freedom and the number of contacts, the number of contact
modes tested is:

(G+Tih/2) [ e
c c X > (¢ 9.
(2 ) (o Mg )5 ez Gt 2 (19)

Note that there are no modes satisfying our utility conditions if n. is less than (3 + |71])/2.

nRZO

Table 1 shows the number of contact modes examined by our code as a function of n.
and it shows the approximate cpu times (on an RS6000/320) for typical problems. Notice
that the numbers of contact modes tested is maximized when the number of contacts equals
3+ |71|. However, these numbers are significantly smaller than the numbers of contact modes
that would be tested (3™¢) if we had not employed our utility conditions.
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Number of Contacts

| R [3]4]5 6] 7 [8 |
Degrees of Freedom Contact Modes Tested
3+ |7 =n.—1 6 | 16 | 45 | 126 | 357 | 1016
34+ |7 = n. 7| 19| 51 | 141 | 393 | 1107

34+ |7 =n.+1 6 | 16 | 45 | 126 | 357 | 1016
approx. cpu seconds || 0.3 | 0.4 | 0.75 | 2.0 | 5.4 15
Contact Modes Tested if no Utility Conditions are Used
| 3ne | 27 | 81 | 243 | 729 | 2187 | 6561 |

Table 1: Numbers of Contact Modes Tested

The largest problems that we have solved to date have had n. = 3 + |7;| = 12, which
required the testing of over 73,000 contact modes and used approximately 20 cpu minutes on
an RS6000/320. In planning applications, the amount of time to examine one system con-
figuration should be considerably smaller than this. Therefore, we are currently developing
a new algorithm based on the bilinear programming algorithm presented in [26]. With this
algorithm, we found one solution to each of several test problems with n. = 3 4 |7;| = 20
in several cpu seconds. Extrapolating the cpu times shown in Table 1, our enumerative al-
gorithm would have taken approximately 3 cpu months to find all solutions for one of these
problems. We emphasize, however, that the bilinear programming algorithm found one so-
lution. In its current form, it terminates as soon as a solution is found. In future work, we
hope to modify the algorithm so that all solutions can be found without enumerating the
contact modes.

5 Finite System Motions

The above analysis has thus far been applied to specific configurations with specific velocities
of the contact points on the the manipulator links. In this section, we discuss two applications
in which the system motion is finite. The first application highlights changes in the contact
mode during system motion, while the second application illustrates the use of quasistatic
analysis to choose control inputs to select the desired contact mode when multiple modes
are simultaneously feasible.

5.1 Noncompliant Contact Modes

Consider a thin rigid rod supported by two points of contact which move slowly together (see
Figure 7). We assume that the coefficient of friction at contact 1 takes on a value y;p during
rolling (or sticking) and a lower value, p15, when sliding. Similarly the effective coefficient of
friction at the second contact is either pyp or pes. Of the nine possible contact modes, only
two, Ry 59 and R,S7, satisty our model utility conditions. Five contact modes involve one
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or more breaking contacts. These are infeasible, because equilibrium cannot be maintained.
The 2R mode is kinematically infeasible since the bodies are rigid and the supports are
controlled to move together continuously. The 25 mode fails because the rank of Wy, is
not three.

n n

AN ANz

Figure 7: Thin Rod Resting on Two Moving Points

Applying inequalities (40) and (41), the RyS; mode can be shown to exist if the current
coefficients of friction define a point in the portion of p-space above or on the line, [y s = lhpq
(see Figure 8). Similarly, points in g-space below or on the line correspond to the Ry.S; mode.
Also, one can show that the 25 mode can occur only if the line passes through the point

(p1s, pas).

Suppose [; and [y are such that the rectangle formed by the coefficients of friction lies
entirely within the R,5; region as shown in Figure 8. As the supports move, [; will reduce, {5
will be unchanged and the coefficients of friction will assume the values py5 and pop, defining
the upper left vertex of the rectangle. As motion progresses, the partitioning line rotates

Ho A
HZR—- R251 . .
HosT /PARTIONING LINE
| 2 RiS;
1
— >
His Hir K

Figure 8: p-Space Decomposition for Rod with Two Contacts

counterclockwise about the origin of p-space. Assuming that the coefficients of friction
remain fixed, then only the R,S; mode is feasible until the instant the partitioning line
passes through the upper left corner of the rectangle. At this point, both RS modes are
feasible, but the mode must switch to R;53, because if it did not, then in the next instant,
the R3S; mode would become infeasible with only RS, feasible. At the instant the mode
switches, the coefficients of friction switch to their other values.
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As the supports continue to approach each other, the partitioning line “bounces” back
and forth between the upper left and lower right corners of the rectangle, switching between
RS modes, seemingly chasing the current point in p-space. The 25 mode is never active,
because it is only feasible when the partitioning line reaches the lower left corner of the
rectangle and if the coefficients of friction are equal to their sliding values, but in this
example, one of the coefficients of friction is always equal to its rolling value. Note that if
the coefficients of friction were random variables, with means at the corners of the rectangle,

the same “bouncing” behavior would be observed, but the corners of the rectangle would
not be fixed®.

5.2 Controlling the Contact Mode with Internal Forces

Consider the planar system shown in initial and goal configurations in Figure 9. The fixed

mg mg
Intalk Goal Grasp

Figure 9: Initial and Goal Configurations of a Planar System

“palm” is connected to two single-link fingers whose revolute joints can be either position-
or torque-controlled. In [39], we discussed an automatic planner for this system, which
found coordinated joint torque and position trajectories to manipulate the workpiece from
the initial grasp to the goal grasp. This plan, which was generated under the frictionless
assumption, consisted of three compliant motion segments of type 4.5, each of which could be
executed by position-controlling one joint while torque-controlling the other. It was shown
in [39] that the controlled torque merely needed to lie within loose bounds to guarantee
successful manipulation. Figure 10 shows the bounds for the first 45 segment of the ma-
nipulation plan, which corresponds to the fingers translating the workpiece to the left until
the left finger achieves edge-to-edge contact with the workpiece (along the longest edge of
the workpiece). The upper bound, which becomes infinite, is drawn as a solid bold curve
which has been truncated at 200 oz.-in. The lower bound is identically zero. It is shown as
a dashed bold line lying along the abscissa.

In this example, inequality (28) was used to modify the torque bounds for the 45 mode
assuming a constant coefficient of friction, p = 0.2. The upper and lower torque bounds for
this example were computed in a point-wise manner along the 45 trajectory segment. They
are shown as bold solid and dashed curves, respectively, in Figure 11.

4Try this experiment with your index fingers and a ruler!
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Figure 10: Torque Bounds with No Friction
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Figure 11: 45 Mode Torque Bounds for Friction Coefficient Equal to 0.2
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Because friction is present, rolling contact modes may exist. In this example, we found
one R2S mode to be feasible (the one for which the object vertex on the left side of the palm
rolled while the workpiece rotated counterclockwise). The bounds delineating feasibility
were computed with inequality (28) formulated for that R2S mode. The results are shown
in Figure 12. The upper and lower bounds are again drawn as bold solid and dashed curves.
Since the bounds cross about half way through the 45 segment, the R2S5 mode is only feasible
during the first half of the planned 45 segment.
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Figure 12: R2S Mode Torque Bounds for Friction Coefficient Equal to 0.2

The information in the previous figures can be used to determine a set of bounds which
preclude the R2S mode and guarantee the 45 mode given that the coefficient of friction is
equal to 0.2. This is the region lying above the lower bound for the 4.5 mode, above the upper
bound for the R2S mode, and below the upper bound for the 45 mode. In this particular
case, the feasible regions of the contact modes do not overlap (except along a portion of the
lower bound of the 45 region), so the region guaranteeing the 45 mode and precluding the
R2S mode is the 45 mode feasibility region shown in Figure 11.

Above it was assumed that the coefficient of friction was known and constant, but this is
usually not the case. It is reasonable to assume that the coefficient of friction lies between
known bounds. In this example, the coefficient of friction was assumed to lie in the range
[0.0,0.2]. The region guaranteeing the 4.5 mode despite bounded uncertainty in the coefficient
of friction was found by determining the guaranteed 4.5 regions for a discrete set of friction
values (we used 0,0.01,0.02,...,0.20) and then computing the intersection of them all. The
resulting region is shown in Figure 13.

These bounds were used to generate a torque control trajectory for a prototype system
with teflon coated surfaces. The trajectory was successfully executed (see [32] [40] for details).
It was observed that the 45 and R2S contact modes occurred as predicted. Note that the
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Figure 13: 45 Mode Guaranteed Torque Bounds for Uncertain Friction Coefficient

narrowest portion of the region specifies the resolution of the torque controller to guarantee
successful execution of the 45 manipulation segment.

6 Conclusion

We have developed a model to predict the planar quasistatic motion of a single laminar
rigid workpiece contacted at multiple points by a general planar manipulator. Our proposed
solution technique tests all contact modes consistent with our proposed quasistatic model
utility conditions. These conditions ensure that any quasistatic contact mode that is feasible,
can remain so in the face of sufficiently small perturbations of the wrench applied externally
to the workpiece. This fact is highlighted by our graphical technique which can be applied
when there are either three sliding contacts or one rolling and one sliding contact.

While dynamic and quasistatic multi-rigid-body models are related, their structures have
significant differences that affect their applicable solution techniques. Unfortunately, the
quasistatic model shares an undesirable feature with its dynamic counterpart: more than
one contact mode may be feasible for a given system state and input. This is true even
when all model parameters are assumed to be known exactly. Despite such ambiguities, our
results were applied successfully to two finite manipulation plans involving several moving

bodies.

In the future, we plan to pursue several approaches to reducing the computation time
required to find all the feasible contact modes. The first approach involves modifying our
current bilinear programming algorithm to find all solutions without enumerating the contact
modes. The second approach is to develop an algorithm that cleverly chooses the order
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of testing the contact modes to minimize the number of column and row changes in the
matrices Py, and Q4,. This will allow much more efficient inversion of those matrices.
The last approach is to parallelize contact mode testing, since each mode may be tested
independently.

We also plan to extend our formulation to three dimensions and to include multiple
workpieces. These extensions are fairly straight forward. The only complications are due to
the fact that the friction cone in three dimensions cannot be represented as a system of linear
inequalities. Approximating the cone by a multi-sided pyramid yields linear constraints, but
presents other problems.
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Coefficients for the 3S Contact Mode

In this appendix, we present the definitions of the coefficients of the equations which define
the regions of feasible 3S contact modes. These coefficients appear in equations (34)-(36).

For the derivations of these coefficients, see [45].
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In this appendix, we present the definitions of the coefficients of the equations which define
the regions of feasible RS contact modes. These coefficients appear in equations (39)-(41).
For the derivations of these coefficients, see [45].
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