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Abstract

Dexterous manipulation refers to the skillful execu-
tion of object reorienting and repositioning maneuvers,
especially when performed by an articulated mechanical
hand. Kinematic analyses of dexterous manipulation are
limited by their omission of contact forces. In this paper,
Peshkin’s minimum power principle [15] for quasi-static
systems is used to combine force and kinematic relation-
ships into a nonlinear mathematical program called the
Jorward object motion problem. Given the joint velocities
of the robot’s hand and arm, the solution of the forward
object motion problem predicts not only the velocity of
the object (as done by kinematic analyses), but also the
contact forces. In kinematic analyses one must guess as to
the nature of all contact interactions (i.e. sliding, rolling
or separating). The solution of the forward object motion
problem definitively determines these interactions and the
contact forces as a byproduct of determining the velocity
of the manipulated object.

1. Imntroduction

The first example of intelligent robotic manipulation
was demonstrated by Paul in 1970 [14] using a parallel-
jawed gripper mounted on the Stanford Arm. The robot
reoriented and stacked a number of colored blocks
through a sequence of grasps, reorienting arm motions and
releases. Paul’s work highlighted the fact that robot arms
have relatively coarse resolution and require relatively
large joint motions to effect relatively small object
motions. One solution to these problems is to mount an
articulated mechanical hand on the end of the arm. A
robot so equipped can achieve "fine" motion control while
reducing concern for arm collisions by initially positioning
the arm and then immobilizing it while the fingers mani-
pulate. Recognition of this fact led firstly to the design
and manufacture of several articulated mechanical hands
and secondly to the study of the kinematics of fine mani-
pulation. The shortcomings of these analyses (discussed
in the next two subsections) motivated the work
presented here on the forward object motion problem.

For the purposes of this paper, the forward kinematic
problem for dexterous hands refers to solving kinematic

CH2750-8/89/0000/0788$01.00 © 1989 IEEE

788

relationships in such a way as to yield a system of equa-
tions which describes the velocity and angular velocity of
the manipulated object as functions of the robot’s joint
velocities. The inverse kinematic problem results in a sys-
tem of equations describing the joint velocities as func-
tions of the object’s translational and angular velocities.
In both cases it is assumed that the positions of the con-
tact points are known. Also, by robot is meant an articu-
lated mechanical hand affixed to the distal end of a
robotic arm.

1.1. Rolling Manipulation

The inverse kinematic problem was first applied to
dexterous manipulation by Okada [13] to plan joint trajec-
tories to control an eleven-jointed, three-fingered hand to
thread a nut onto a bolt. In his solution he imposed the
constraint that the finger tips roll (and never slide) on the
nut. Because Okada’s results only applied to spherical
and planar surfaces, Kerr [9] and Ji [8] derived systems of
differential equations relating the object velocity to the
joint velocities for arbitrarily shaped finger tips rolling on
an arbitrarily shaped object. The equations are quite
complex. For example, application of Kerr’s results to
manipulation with three fingertips rolling on an object
yields 27 simultaneous, nonlinear, time-varying, coupled,
first order differential equations in the following form

P')’=Qvob (3)

where P is a 27 x 17 matrix, Q is a 27 x 6 matrix, ¢ is
the time derivative of the vector of joint angles and
surface parameters of the object and fingers and v, is the
velocity of the object. Since there are 27 equations and 23
unknowns, ten dependent equations must be identified (if
possible) and removed before one may specify either the
desired trajectory of the object or the desired trajectories
of six joints (the other joint trajectories are determined by
the closed-loop kinematic structure). If elimination of the
proper number of equations were possible, the resulting
equations, while computationally expensive, offer the free-
dom to solve either the forward or the inverse kinematic
problem where in both cases the initial grasp configura-
tion is assumed to be known. However, as pointed out by
Ji [8], joint angle limitations, geometric interferences or
insufficient actuator torques may cause one or more con-
tacts to slip. In this case the kinematic equations must be
valid for rolling and slipping and additionally a means is



required to determine the nature of the contact interac-
tions (i.e., rolling, sliding or separating).

1.2. Sliding Manipulation

Attempts to quantify the effects of sliding during
manipulation were first made by Mason [11] for the case
of a pushed objects sliding quasi-statically in a horizontal
plane. Peshkin [16] found quantitative bounds on several
of Mason’s qualitative results by considering all possible
supporting contact distributions. Also working in the
plane, Brost and Erdmann developed techniques to
remove all uncertainty in the orientation of planar objects;
the former through squeezing operations with a parallel-
jawed gripper (3] and the latter by planning a sequence of
tilting operations of tray containing the object [4].
Another planar manipulation problem was studied by
Fearing who developed of an algorithm to enable the
Salisbury hand to "twirl a baton" in a vertical plane s, 6].
Using the Salisbury Hand, Brock demonstrated manipula-
tion with "controlled slip." {2] For manipulation of a
three-finger tip grasp, his method can be viewed as choos-
ing two finger tip contacts to define an axis of rotation.
Those two fingers apply a somewhat larger normal force
than the third finger tip which is dragged across the
object so that its friction force causes a moment and
induces rotation about the axis defined by the two finger
tips. Brock’s main contribution was to determine the
appropriate internal grasp forces to ensure success of the
desired rotation. His method’s main drawbacks are com-
plexity for more than three contacts and difficulty of
inversion. One other study on contact slippage was
undertaken be Nguyen [12]. He was concerned with the
stability of static grasps for which manipulation occurred
passively. That is, the object’s motion resulted from the
deformation of the hand in response to changes in the
external wrench applied to the object. Active manipula-
tion was not considered.

The only work on sliding manipulation for general
three-dimensional objects has been done by Ji [8] and
Trinkle [18]. Ji’s dissertation contains results for fingertip
grasps analogous to those developed by Kerr [9] for finger-
tips with rolling contacts. His result’s major weakness is
that it relies on the contacts constraining the object such
that there is a unique kinematically admissible motion.
Trinkle [17] developed the frictionless object motion prob-
lem specifically to predict the motion of the grasped
object in response to the motion of the robot when there
18 more than one (possibly an infinite set of} kinematically
edmissible motion,

1.2, Bhort-Comings and Proposed Remedies
Kinematic analyses are nat entirely suitable far appli-
cation to many manipulation problems, because they do
not nclude knowledge of the contact forees. Thus one
st guess a3 to the contact interactions and/or augment
the kinernatic anelysis with force information. Complete
dynamic mnalyses are not always the correct choice either
dl::e to their complexity. A specific application which
]“Ehlizht! this point is mechanical pssembly.  Assembly

operations for complex parts are usually performed care-
fully and slowly. Under these conditions, the assembly
process may be approximated as quasi-static with friction
forces and compliance effects dominating the motion of
the mating workpieces.

Current knowledge in dexterous manipulation is lack-
ing primarily in two regards:

1. Almost all results for three-dimensional manipulation
apply to grasps with three fingertips. Contacts
between the object and proximal links of the hand
and other objects in the environment have been
neglected.

2. Available results are best suited to applications where
the effective coefficients of friction acting at the con-
tacts are very high (rolling results of Ji and Kerr) or
very low (sliding results of Trinkle). No technique
exists with which one may study quasi-static, dex-
terous manipulation when the coefficients of friction
are moderate, so that rolling and sliding occur simul-
taneously.

Some drawbacks of attempting to utilize currently avail-
able research results can be seen by considering the follow-
ing scenario. Suppose that to test proposed mechanical
assembly plans before performing them on the shop floor,
the plans were simulated using either Trinkle’s frictionless
result or Ji’s sliding kinematic result. Such a simulator, if
based on either result, could erroneously predict successful
assembly motions when in fact friction would cause the
workpieces would jam. Additionally, if the simulator were
based on the former result, contact forces and required
actuator torques would consistently be underestimated,
leading to excessive wear and part breakage. An assembly
simulator could not be based on any of the other results
discussed above, because they all assume rolling contacts:
mechanical assembly invariably involves sliding contacts.

In the following section, the forward object motion
problem is introduced. For the case of quasi-static mani-
pulation (e.g., mechanical assembly), it provides remedies
for the two major short-comings noted above: allowing
the object to contact any link of the robot and any other
body in the environment; and providing an analytical tool
valid for any value of friction coefficients. The forerunner
of the forward object motion problem is the frictionless
object motion problem which was developed in [17].

2. The Forward Object Motion Problem

The forward object motion problem uniquely com-
bines the kinematic constraints and the equations govern-
ing the forces of quasi-static menipulation into an optimi-
zation problem., This optimization problem represents the
instantaneous equations of motion of the manipulated
ohject, The object may contact any link of the robot and
any 11(::1:,' in the environment; moving or stationary. The

inpit to the forward ohject motion problem is the vector
of joint velocities, the eurrent contact configuration snd
the effective coefficients of friction acting &t each contact,
The solution yields the contact forces, the velocity of the
object and the nature of the contact interaction at each




contact, i.e., sliding, rolling or separating. Because both
kinematic and force information is included, contact forces
and jamming conditions may be predicted; a task which
purely kinematic analyses cannot perform. If all friction
coefficients are zero, then the optimization problem
reduces to a linear program [17].

In the following derivation of the forward object
motion problem, two fundamental assumptions are made:
first, all bodies are rigid and second, the manipulation sys-
tem obeys Peshkin’s minimum power principle [15].
Roughly speaking the "...minimum power principle states
that a system chooses at every instant the lowest energy
or ‘easiest’ motion in conformity with the constraints."
This principle applies only to quasi-static systems subject
to forces of constraint (i.e., normal forces arising due to
contacts among rigid bodies), Coulomb friction forces and
forces independent of velocity. For this principle the
power is defined as

ch

- E fzcl’ TV (3)
s

where v; is the velocity of the § th point of application of
external forces and f,,; is the sum of the external forces,
excluding constraint forces, applied to the ¢ th point.
Included in P,, are the friction and gravitational forces.
The normal forces at the contacts are omitted. Thus P,,
is only a fraction of the total power.

The wrench w,, applied to the object through the
i point contact with friction can be written as the pro-
duct of the i contact’s unit wrench matrix W, and the
wrench intensity vector ¢; as

W, = W,- C; 1 = 1, EECEERP () (4)
where n, is the number of contact points,
. n o ¢
. mn
n; 0 a;
W,- = v XA x . x & C; = €
H n; Iy 0; T s

r; is the position of the ¢ th  contact point, 4; is the
contact’s unit normal directed inward with respect to the
object, 7i; and §; are orthogonal unit vectors defining the
contact tangent plane and the elements of ¢; are the mag-
nitudes of the i ¥ contact force in the fi;, 6; and 4; direc-
tions. Including all of the contacts, the equilibrium rela-
tionships can be written and partitioned as follows

[w,, w, w,,] :,‘ - -

s

s}

where g, is

object,

the gravitational wrench acting on the
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where p € {n,0,a}. This partitioning of the wrench
matrix allows us to separate the sum of the friction
wrenches W, ¢, + W ¢, from the sum of the contact

normal wrenches W, ¢,. The equation for P,, may now
be written as follows
. T Cn
P, = —qg {gczt + [Wn wo] <, } (6)

where q,, represents the object’s linear and angular velo-
cities and the superscript T denotes matrix transposition.
Given the joint velocities of the robot (hand and arm) 4
the velocity of the object may be found by minimizing
P,. subject to rigid body velocity constraints (i.e.,
kinematic constraints) and Coulomb friction constraints.
The velocity constraints disallow interference between
bodies and may be written as

WuT (iob 2 Lu 0 (7)

where W,” q,, and L, @ are the vectors of the normal
velocity components of the contact points on the object
and the hand respectively and L, is a partition of the
transmitted Jacobian [17]. The Coulomb friction con-
straints require that the f* contact force lie within the
friction cone given by

2 2 2.2, .
Cin + € S B g :

20; N

(8)
(9

th

Cia
where u; is the coefficient of friction acting at the ¢
contact point. Inequality (8) may be written in matrix
form as follows

¢,"D;¢; 20; i=1,...,n (10)
where
L -1 0 O
D,~=-——2- 0 -1 0
1

Application of the minimum power principle requires
that P,, be minimized subject to inequalities (7), (9) and
(10). One might think that the equilibrium equation (5)
should also be used to constrain the minimization. How-
ever, by formulating and examining the dual optimization
problem, one finds that equilibrium equation (5) is impli-
citly satisfied and that inequality (9) is redundant. Thus
the primal problem is given by



. . . M cn
Minimize P, = —qobT {8ezt + [Wn Wo] [c ]} (6)
o
waT (.lob > Lll é (7)
¢,'D;e; 20; i=1,. (10)

?
with unknowns q,;, ¢,, ¢, and ¢, (implicit in the vec-
tors ¢; ).

Subject to:

., N,

Applying the Kuhn-Tucker optimality conditions [1]
to the primal problem yields the dual constraints. The
dual objective function is derived by substituting the velo-
city constraints into the primal objective function and
considering the implications of maximizing the result.
After some manipulation, the dual problem is seen to be

Maximize P, =6 " L, A (12)

c’l
Subject to: g, + [W" W,] [c ] + W, =0(13)
o

W, qu +2NTD, c, = 0 (14)
W,"q, +2NTD, ¢, = 0(15)
2N"D, ¢, = 0(16)

A2 0(17)

n > 0 (18)

where A is the vector of Lagrange multipliers associated
with inequality (7), N is a diagonal matrix whose nonzero
elements are the Lagrange multipliers n; associated with
inequalities (10), D, and D, are identity matrices and
D, is a diagonal matrix with nonzero elements given by
—u;% It is well known that the value of the Lagrange
multiplier associated with a specific rigid contact con-
straint is equal to the magnitude of the normal force
necessary to maintain contact [10]. Therefore, the vector
A is equivalent to c,, and it is evident that constraint
(13) is equivalent to the equilibrium equation (5) and con-
straint (17) is equivalent to inequality (9).

At the optimal solution, the primal and dual con-
straints are satisfied simultaneously, therefore the primal
problem defined by the nonlinear program, (6), (7) and
(10), need not include the equilibrium equation. Also, for
all feasible solutions, the primal and dual objective func-
tions satisfy the following relationship

. Cn
7 LGT Cq < —('labT Bext — qob’r[wu WO:I [c,] (19)

with equality holding only at the optimal solution. The
term on the left hand side of the inequality is the power
applied to the object by the forces of constraint. The
terms on the right are the rate of gain of potential energy
and the power dissipation through Coulomb friction.
Thus, at the optimal solution, expression (19) has the fol-
lowing physical interpretation. The motion of the fingers
in the direction of the contact normals supplies power to
the object.  Some of that power is lost to friction. What
remains goes into lifting the object. Consequently every
suboptimal solution must defy conservation of energy.
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2.1. Extension: Sliding Contacts

The primal forward object motion problem (6), (7)
and (10) is complete for rolling contacts, but not for slid-
ing contacts. If sliding occurs at the i * contact, then the
i™ inequality in (7) and inequality (10) must be satisfied
as equalities. The former implies the sliding condition and
the latter requires the contact force to lie on the boundary
of the friction cone. The Coulomb model of friction also
specifies that the contact force be anti-parallel to the rela-
tive contact velocity. This specification was concisely
expressed by Jameson 7] as

¢ ~(‘vg xg)=0; i

0; ¢

L,...,n,

1,...,

(20)
n, (21)
where "v“ is the relative contact velocity (or simply con-
tact velocity) expressed with respect to the i* contact
frame. Constraint (20) requires that contact force to lie
in the plane formed by the sliding velocity vector and the
contact normal. Constraint (21) implies that the friction

force oppose the contact velocity, thereby dissipating
power. The contact velocity is given by

‘vti = W.'T Qop — L; ¢ 3

i
¢ vy €

i=1,...,n,, (22

where L; is the transmitted Jacobian of the i % contact
[17]. Relations (20) and (21) may be written in terms of
the wrench intensities and the object and arm velocities as
the following set of nonsmooth, nonconvex constraints

¢ A W, —¢ AL 6 =0; (23)
¢TW, q, —¢,"L; 8 <0; (24)
1 =1,...,n,

where A; is the skew-symmetric cross product matrix
associated with the unit normal at the i contact &; .

The complete primal problem is now given by

f.
Minimize P, = “"lobT {8ext + [ n woJ ]} (6)
Subject to: w,"q, 2L, ] (7
¢, D;c; 20; i e (10
C'T Ai WI'T (.lob - Cy A" L" 9 = 0; 1t €V (23)
C"T W'-T qob - C"T L" é S 0 M i € \I’ (24)

where 1 and ¥ represent the set of contact points
assumed to be maintained and sliding, respectively. More
precisely, we write

. . T 4
1= {' | waiqub =1; 0}
T={i|ieQne’ Die; =0}

where w,," is the i row of W," and 1,;" is the i® row
of L,. Constraints (23) and (24) complete the Coulomb
friction model without which friction forces could create
rather than dissipate power resulting in an unbounded
objective function.

To determine q,;, P,, must be minimized subject to

the rigid body velocity constraints (7) and the ('louloxgb
friction constraints (10), (23) and (24). The object will



execute the motion corresponding to the feasible solution
of least power. If no feasible solution exists, then the pro-
posed motion of the robot is kinematically inadmissible,
i.c., the mechanism will jam. If the minimum power solu-
tion is unbounded, then the proposed motion causes the
grasp configuration to become unstable, ¢.e., danger of
dropping the object is imminent.

2.2. Special Case: Frictionless Contacts

Before beginning this section, it was claimed that the
set of nonlinear programs representing the forward object
motion problem reduces to a single linear program when
friction is absent. This may be seen by noting that the
only nonlinear constraints, (10), (23) and (24), are
removed because they are a result of the Coulomb friction
model. In addition, since friction forces no longer dissi-
pate power, the second term in the primal object function
(and the associated variables ¢, and ¢,) becomes zero.
Thus in the frictionless case the primal forward object
motion problem reduces to the following single linear pro-
gram, called the velocity formulation of the frictionless
object motion problem

.7
ch = —Qop Bext (25)

waT (.lob 2 La 0 . (7)

The input of this formulation is, as before, the vector of
joint velocities of the robot. Its output is the contact
forces (i.e. the Lagrange multipliers associated with ine-
quality (7)), the velocity of the object and the nature of
the contact interactions. The contact interactions are
indicated by the values of the Lagrange multipliers: if the
i % multiplier is zero, then the bodies are separating at
the i% contact; if the ¢® multiplier is positive, then the
bodies are sliding on one another at the ¢ % contact; nega-
tive values of the multipliers are impossible.

Minimize

Subject to:

The dual linear program is called the force formula-
tion of the frictionless object motion problem and is stated
as follows

Maximize P, = 6"L, c, (12)
Subject to: Gt + Wye, =0 (26)
c, 20. (27)

The velocity and force formulations are equivalent and
therefore the input-output relationship for the dual is
identical to that of the primal. As was the case for the
formulations with friction, the primal and dual solutions
are equivalent at the optimal solution so that energy is
conserved.

3. Conclusion

The forward object motion problem has been
developed to predict the instantaneous velocity of an
object undergoing quasi-static dexterous manipulation.
This formulation is more capable than any previous
description of quasi-static manipulation, because any con-
tact configuration is allowed and Coulomb friction con-
straints are included. The forward problem is in the form
of a nonconvex, nonsmooth nonlinear program with all
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nonlinear terms quadratic or bilinear. Its input is the
robot’s joint velocities and the contact configuration; its
output is the velocity of the object, the nature of contact
interactions (i.e., rolling, sliding or separating) and the
contact forces. Dramatic simplification occurs in the fric-
tionless case: the nonlinear program reduces to a single
linear program. Even if friction is not negligible, if the
manipulation task requires specific contact interactions,
the nonlinear program may be significantly simplified.

Of the three primary drawbacks of the forward object
motion problem two are consequences of applying
Peshkin’s minimum power principle in the derivation: the
first drawback is that only the Coulomb model of friction
may be used and the second is that dynamic information
is lost. The third drawback is that conservation of energy
implies that only the global minimum of the forward
object motion problem will predict the object’s motion: a
local minimum is not good enough. A rectifiable defi-
ciency of the formulation is that statically indeterminate
grasp configurations cause difficulty in the numerical solu-
tion, because the contact forces cannot be uniquely deter-
mined. A remedy which does not violate the conditions of
the minimum power principle is to extend the formulation
to include compliance.

Application of the forward object motion problem is
not restricted to dexterous manipulation. The formula-
tion given in this paper describes the quasi-static motion
of a "ree" rigid body in contact with a system of
velocity-controlled rigid bodies. A straight forward exten-
sion of the forward object motion problem could be used
to predict the instantaneous velocity of a quasi-static sys-
tem of "free" rigid bodies in response to the motion of a
system of moving rigid boundaries.
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