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ABSTRACT
Multibody systems with rigid bodies and unilateral contacts

are difficult to simulate due to discontinuities associated with
gaining and losing contacts and stick-slip transitions. Meth-
ods for simulating such systems fall into two categories: penalty
methods and complementarity methods. The former calculate
penetration depths of virtual rigid bodies at every time step and
compute restoring forces to repair penetrations, while the latter
assume that the bodies are truly rigid and compute contact forces
that prevent penetration from occurring at all.

In this paper, we are concerned with complementarity meth-
ods. We present an instantaneous formulation of the equations of
motion of multi-rigid-body systems with frictional contacts as a
complementarity problem. The unknowns in this formulation are
accelerations and forces at the contacts. Since it is known that
this model does not always admit a finite solution, it is problem-
atic to use it directly in an integration scheme. This fact moti-
vates the discrete-time formulation presented second. Although
the discrete-time formulation also takes the form of a comple-
mentarity problem, it does not suffer from non-existence, and
thus it is suitable for simulation. Numerical results are compared
to the exact solution for a sphere initially sliding, then rolling, on
a horizontal plane.

1 Introduction
Multibody dynamic systems for which the interacting bod-

ies are nominally rigid are ubiquitous in our society: motors, en-

gines, and the automation devices used to build portions of these
machines are common examples. Where possible, machine de-
signers use joints that provide bilateral kinematic constraints be-
tween the connected bodies (e.g., revolute joints). Such joints
are desired, because they are easy to analyze, and they have
long operational lives. In some situations, however, design con-
straints dictate the use of “joints” which provide only unilateral
kinematic constraints. For example, in the domain of automated
manufacturing, parts feeders typically have rigid protrusions that
interact with parts as they stream by (see Figure 1). In assembly
applications, fixtures are designed to hold parts in precise posi-
tions and orientations relative to each other. If a part comes to
rest before fully engaging the fixture, subsequent operations on
the fixtured parts may not meet design specifications and may
not be recognized until the completed product fails an inspection
test.

Despite the importance of multi-rigid-body dynamic sys-
tems with unilateral contacts, robust, efficient simulation meth-
ods are not widely available. The two primary methods are
penalty methods and complementarity methods. The former cal-
culate penetration depths of virtual rigid bodies at every time
step and compute restoring forces as functions of these depths
to prevent unrealistic penetrations, while the latter assume that
the bodies are truly rigid and attempt to compute contact forces
that prevent penetration from occurring at all.

The objective of this paper is to present two complementar-
ity formulations of multibody dynamic systems that have served
both to increase our theoretical understanding [8] of multibody
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Figure 1. The exit orientation of the cup-shaped part must be with the

curved portion down, regardless of the entering orientation [2].

dynamics problems and to provide us with mathematically well-
posed and well-behaved time-stepping methods as alternatives to
penalty methods.

2 The Model
Our model consists of five parts: the Newton-Euler equa-

tion [5], a kinematic map (to relate orientation parameters to
angular velocity variables), equality constraints (to model joint
connections), a normal contact condition (to model intermittent
contact behavior), and a dry friction law satisfying the Maximum
Work Principle [4]. To formulate the instantaneous equations of
motion, we first introduce the unknowns and several other useful
quantities. Let the position and orientation of bodyj in an iner-
tial frame be represented by the vectorqj

1. Three elements ofqj

represent the position of the center of mass of bodyj and three or
more other coordinates2 represent the orientation of bodyj. The
generalized velocity of the body’s center of mass will be denoted
by νj ∈ <6. The generalized coordinates and velocity of the
system,(q andν), are constructed by concatenating all the indi-
vidual body configuration and velocity vectorsqj andνj . Time
will be denoted byt.

We assume that two types of contacts exist: permanent me-
chanical joints, each represented by a system of equality con-
straints (five in the case of a one-degree-of-freedom joint such
as the one shown in Figure 2), and isolated point contacts with
well-defined contact normals, each represented by a single in-
equality constraint (see Figure 2). The former and latter types

1The tupleqj is really not an element of a vector space, but we will refer to it
and the related tupleq as vectors for brevity

2For example, one might choose to use four Euler parameters to represent the
orientation of each body.

are also known as bilateral and unilateral contacts, respectively.
Let B andU denote the mutually exclusive sets of unilateral and
bilateral contacts:

B = {i : contacti is a joint} (1)

U = {i : contacti is a point contact}, (2)

whereB ∪ U = {1, ..., nc} andnc is the number of contacts.
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Figure 2. Two bodies in unilateral contact at a point with a well-defined

unit normal n̂i. The orthogonal unit vectors t̂i and ôi lie in the contact

tangent plane.
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Figure 3. Two bodies joined by a revolute joint. The zi-axis is co-linear

with the joint axis.

In order to define contact maintenance, sliding, and rolling,
let vi, ci ∈ <6 denote the relative generalized velocity and force
at contacti. These quantities are shown in Figures 2 and 2 for
a unilateral and a bilateral contact. The relative velocity at the
unilateral contact between the bodies on the left lies in the con-
tact tangent plane (spanned by the orthogonal unit vectorst̂i and
ôi (ôi points out of the page)), so the bodies are sliding. Since
friction is present, the contact forceci has both normal and tan-
gential components. The contact frame of the joint is centered
on the axis of rotation with thez-axis co-linear with the axis of
rotation. Note that the generalized contact force is shown not
passing through the center of the joint, thus indicating the pres-
ence of friction.

It is convenient to define “normal” and “frictional” sub-
spaces of the generalized relative velocity and the force at a con-
tact. Letvin andvif represent orthogonal subspaces of the space
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of relative velocities of the bodies at the contact. Specifically,
vin represents the relative velocities normal to the constraints
(i.e., those that will be resisted by the structures of the bodies),
andvif represents the relative velocities that are unconstrained
but resisted by friction. In terms of these quantities, a contact is
said to be maintained if the bodies are touching and ifvin = 0
(this will always be true for joints). The mutually exclusive sets
of sliding and rolling contacts are defined at the velocity level as:

S = {i : vin = 0, vif 6= 0} (3)

R = {i : vin = 0, vif = 0}. (4)

Note that these definitions apply to unilateral and bilateral con-
tacts.

In analogy to the definitions ofvin andvif , let cin represent
the components of the generalized contact force that maintain the
(unilateral or bilateral) constraints at contacti and letcif repre-
sent the generalized friction force at contacti.

We are now in a position to develop the system of equations
defining the dynamic motion of multi-rigid-body systems. Recall
the five parts mentioned above.

1. Newton-Euler Equations: The Newton-Euler equation can
be written as follows:

M(q)ν̇ = g(q, ν, t), (5)

whereM(q) is the inertia tensor andg(q, ν, t) is the vector
of loads experienced by the bodies.

2. Kinematic Map : The time rate of change of the generalized
coordinateṡq must be related to the generalized velocity of
the bodiesν:

q̇ = G(q)ν. (6)

Note that when the orientation representation uses more than
three parameters,G is not square, although it has the prop-
erty thatGT G = I, whereI is the identity matrix of the
appropriate size.

3. Joint Constraints: If contacti is a joint (i.e., i ∈ B), there
is a vector constraint function denoted bybψin(q, t) = 0.
Stacking thebψin functions for alli ∈ B into the vector
bΨn(q, t), the system constraints can be written as follows:

bΨn(q, t) = 0. (7)

4. Normal Contact Constraints: For each unilateral contact,
one can define a signed distance or gap function,uψin(q, t)

for all i ∈ U , which is zero as long as the bodies in question
remain in contact and becomes greater than zero when they
separate. Since the bodies are rigid, they may never over-
lap. Thus the gap functions are constrained to be nonnega-
tive. Stacking all the gap functions into the vectoruΨn(q, t)
yields the following nonpenetration constraint:

uΨn(q, t) ≥ 0. (8)

This constraint applies only locally in the configuration
space of the system.
The force at each contact is assumed to be compressive. That
is, the normal component of the force at contacti may not
act to pull the bodies together (i.e., ucin ≥ 0). Combining
all ucin for all i ∈ U into the vectorucn, we write all normal
force constraints as:

ucn ≥ 0. (9)

Note thatucin acts to preventuψin from becoming negative
and thus may be regarded as a Lagrange multiplier.
There is one last constraint needed to properly represent the
disjunctive nature of unilateral contact interactions. More
specifically, if the contact is supporting a load (i.e., ucin >
0), then the contact must be maintained (i.e., uψin = 0).
Conversely, if the contact breaks (i.e., uψin > 0), then the
normal components (and hence the frictional components
too) of the contact force must be zero (i.e., ucin = 0).
At least one ofucin and uψin must be zero. Notice these
conditions imply the orthogonality of the vectorsucn and
uΨn(q, t):

uΨn(q, t)T ucn = 0 (10)

where the superscriptT is the transpose operator.
5. Friction Law : At contacti, the generalized friction force

cif can act only in a subset of the unconstrained directions
and must lie within a closed convex limit setFi(cin, µi).
The limit set must contain the origin3 and typically scales
with the normal component of the contact force and friction
coefficientµi, thus forming a friction cone. When contact
i is rolling, the friction force may take on any value within
the set. However, when the contact is sliding, the friction
force must be the one withinFi(cin, µi) that maximizes the
energy dissipation. Such models are said to satisfy the Maxi-
mum Work Principle [4], which can be expressed as follows:

cif ∈ argmax
{−vT

ifc
′
if : c′if ∈ Fi(cin, µi)

}
, (11)

3If the origin is not inFi, then the maximally dissipative friction force at a
sliding contact can generate energy in some sliding directions. Convexity ofFi

guarantees that the friction force direction at a sliding contact is unique.3 Copyright c© 2003 by ASME



wherec′if is an arbitrary vector in the setFi(cin, µi).
For example, if contacti is a unilateral point contact with
isotropic Coulomb friction, then the scalarucin denotes the
normal component of the contact force anduvin is zero. The
friction force is denoted byucif = (ucit,

ucio) and the tan-
gential relative velocityuvif = (uvit,

uvio) lie in the contact
tangent plane. The friction limit setFi(ucin, µi) is the disc
defined as follows (see Figure 4):

Fi(ucin, µi) = {ucif : ||ucif || ≤ µi
ucin, ucin ≥ 0}, (12)

where||(·)|| denotes the Euclidean norm andµi is the non-
negative coefficient of friction. Maximum work occurs
when the friction force is opposite to the relative velocity,
as shown in Figure 4.

ti
^

oi
^

cif
u

υif
uLimit Set

Contact
Point

Figure 4. Circular limit set of radius µi
ucin in the contact tangent plane

for isotropic Coulomb friction. The contact point is at the center of the

circle. A nonzero relative velocity component in the contact tangent plane
uvif gives rise to the maximally dissipative friction force ucif .

Our instantaneous dynamic model is defined by equations
(5,6,7,8,9,10,11), but the equations are in a form that makes their
solution difficult. However, as will be shown, the model can be
cast as a complementarity problem [3], allowing one to apply
well-studied, solution algorithms.

Complementarity Problems The standard nonlinear
complementarity problem (NCP) can be stated as follows:

Definition 1. Nonlinear Complementarity Problem (NCP):
Given an unknown vectorz ∈ <m and a known vector function
w(z) : <m → <m, determinez such that:

0 ≤ w(z) ⊥ z ≥ 0, (13)

where⊥ implies orthogonality (i.e., w(z)T z = 0).

The standard linear complementarity problem is a special
case:

Definition 2. Linear Complementarity Problem (LCP): Given
an unknown vectorz ∈ <m, a known fixed matrixF ∈ <m×m,
and a known fixed vectorf ∈ <m, determinez such that:

w = Fz + f (14)

0 ≤ w ⊥ z ≥ 0. (15)

We adopt the shorthand notation, LCP(F , f ).

2.1 Complementarity Formulation of the Instanta-
neous Model

To achieve model formulation as a well-posed complemen-
tarity problem, we must take three steps. First, express the Max-
imum Work Principle as a system of equations and inequalities,
second, express all relevant equations in terms of accelerations,
and third, expose the contact forces in the Newton-Euler equa-
tion. The unknowns of the resulting complementarity problem
will be accelerations and contact forces.

1. Reformulating the Maximum Work Principle : The Max-
imum Work Principle (11) can be replaced by an equivalent
system of equations and inequalities by formulating it as an
unconstrained optimization problem with Lagrange multi-
pliers and applying Fritz-John optimality conditions. How-
ever, to do this, a specific form ofFi is required. In this
paper, we will consider only two simplified friction mod-
els; isotropic Coulomb friction at unilateral contacts and dry
friction of constant maximum magnitude in one-degree-of-
freedom joints.
At unilateral contacts, we will assume isotropic Coulomb
friction as defined in the example above. If contacti is a
one-degree-of-freedom joint, we will assume that the max-
imum magnitude of the dry friction force is independent of
the load in the other five component directions. Thus the
friction limit set for a bilateral jointFi(µi) will be:

Fi(bcifmax) = {bcif : |bcif | ≤ bcifmax}, ∀ i ∈ B, (16)

where|(·)| denotes the absolute value of a scalar andbcifmax

is the nonnegative maximum magnitude of the generalized
friction force in jointi. Such a limit set can be seen as a spe-
cial case of the circular limit set for unilateral contact. If one
fixes the diameter of the circle and removes thet-direction,
the limit set reduces to a line segment (in the direction of
joint travel) of fixed lengthbcifmax.
Applying the Fritz-John optimality conditions to equa-
tion (11) with Fi given by equation (12) yields the
following equivalent system:
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µi
ucin

uvit + ucit
uλi = 0

µi
ucin

uvio + ucio
uλi = 0

usi = µ2
i

uc2
in − uc2

it − uc2
io ≥ 0

0 ≤ usi ⊥ uλi ≥ 0





∀ i ∈ U (17)

whereuλi is the Lagrange multiplier of the constraint and
usi is a slack variable for the friction limit set. Note that
uλi = ||uvif || at an optimal solution.
The result obtained whenFi is given by equation (16) is:

bcifmax
bvif + bcif

bλi = 0
bsi = bc

2
if,max

− bc
2
if ≥ 0

0 ≤ bsi ⊥ bλi ≥ 0





∀ i ∈ B (18)

Note thatbλi = |bvif | at an optimal solution.
2. Writing Contact Constraints in Terms of Accelerations:

Equation (7) is expressed at the acceleration level by differ-
entiating twice with respect to time:

ban = bW
T

n ν̇ + bk(q, ν, t) = 0, (19)

wherebW
T
n = ∂(bΨn)

∂q G and
bk(q,ν, t) = bẆ

T

n ν + ∂2(bΨn)
∂q∂t Gν + ∂2(bΨn)

∂t2
.

Equation (8) can be expressed in terms of accelerations in
the same way:

uan = uW T
n ν̇ + uk(q, ν, t) ≥ 0 (20)

whereuW T
n = ∂(uΨn)

∂q G and
uk(q,ν, t) = uẆ

T

n ν + ∂2(uΨn)
∂q∂t Gν + ∂2(uΨn)

∂t2
. How-

ever, note that this constraint only applies for each unilat-
eral contact whose normal component of velocity zero (i.e.,
i ∈ U ∪ (S ∪ R)).
We can now express equations (8-10) in terms of accelera-
tions:

0 ≤ ucn ⊥ uan ≥ 0. (21)

The Maximum Work Principle (11) must be considered fur-
ther. When contacti is sliding, the solutions of condi-
tions (17) and (18) produce the correct results (i.e., the fric-
tion force obtains its maximum magnitude and directly op-
poses the sliding direction) and, we can use these condi-
tions to eliminateucif . Also as required, when a contact is

rolling, these conditions allow the friction force to lie any-
where within the friction limit set. What these conditions
do not provide is a mechanism for determining if a rolling
contact will transition to sliding. However, this problem is
easily remedied by replacing the relative velocity variables
in equation (11) with the analogous acceleration variables.

µi
ucin

uait + ucit
uλi = 0

µi
ucin

uaio + ucio
uλi = 0

usi = µ2
i

uc2
in − uc2

it − uc2
io ≥ 0

0 ≤ usi ⊥ uλi ≥ 0





∀ i ∈ U ∩R (22)

whereuλi = ||uaif || at and optimal solution.

bcifmax + bcif
bλi = 0

bsi = bc2
ifmax − bc

2
if ≥ 0

0 ≤ bsi ⊥ bλi ≥ 0





∀ i ∈ B ∩R (23)

wherebλi = |uaif | at and optimal solution.
3. Exposing the Contact Forces in the Newton-Euler Equa-

tion: Recall that the vectorg(q, ν, t) represents the resultant
generalized forces acting on the bodies. In order to com-
plete the formulation as an NCP,g(q,ν, t) is expressed as
the sum of the normal and friction forces at the unilateral
and bilateral contacts and all other generalized forces. The
Newton-Euler equation becomes:

M(q)ν̇ = uW n(q)ucn + uW f(q)ucf (24)

+ bW n(q)bcn + bW f(q)bcf + gext(q, ν, t),

wheregext is the resultant of all non-contact wrenches ap-
plied to the bodies,ucf andbcf are formed by stacking the
generalized friction vectors at the unilateral and bilateral
contacts respectively, and the matricesuW n, uW f , bW n,
andbW f map contact forces into a common inertial frame.

2.2 A Differential NCP
The instantaneous dynamic model is now complete.

Definition 3. CP1: Equations (6,17,18,19,21,22,23,24) consti-
tute a differential, nonlinear complementarity problem.

It is known that solutions to CP1 do not always exist (see [8]),
however, if the Maximum Work Principle is relaxed so that fric-
tion forces merely need to be dissipative, rather than maximally
dissipative, then a solution always exists [6]. If one wanted to
use this NCP in an integration scheme to simulation the motion
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of a multibody system, thepath algorithm by Ferris and Mun-
son is the most robust, general purpose NCP solver available
(www.cs.wisc.edu/cpnet/). One should also note that this NCP
can be converted into an approximate LCP by linearizing the fric-
tion cone constraint (see [8] for details). The LCP then can be
solved by Lemke’s algorithm [3], but the solution non-existence
problem persists.

In the next section, we will present an Euler time-stepping
method formulated as an LCP with guaranteed solution exis-
tence.

3 Discrete-Time Formulation as an LCP
Let h denote a positive step size andtl the current time, for

which we have estimates of the configurationql = q(tl) and the
generalized velocityνl = ν(tl) of the system. Our goal is to
derive approximations of the configurationq(l+1) = q(tl + h)
and velocityν(l+1) = ν(tl + h) that approximately satisfy the
NCP derived in Section 2. In the derivation of the time-stepping
subproblem, we assume that the matricesM , uW n, bW n, uW f ,
bW f and the vectorgext are constant over the current time step4.
In addition, we use the following approximations of the state
derivatives:ν̇ ≈ (ν(l+1) − ν(l))/h andq̇ ≈ (q(l+1) − q(l))/h.

1. Discrete-Time Newton-Euler Equations: The discrete-
time form of the Newton-Euler equation (24) is given as:

M · (ν(l+1) − ν(l)) = uW n
up(l+1)

n + uW f
up

(l+1)
f (25)

+ bW n
bp

(l+1)

n + bW f
bp

(l+1)

f + pext,

where the· on the left side of the equation denotes mul-
tiplication andup(l+1)

n = huc(l+1)
n , up

(l+1)
f = huc

(l+1)
f ,

bp
(l+1)
n = hbc

(l+1)
n , bp

(l+1)
f = hbc

(l+1)
f are the unknown

generalized contact impulses. One should notice that since
the contact forces are known only at the end of each time
interval, the definitions of the impulses imply that we must
view the contact forces as constant over each time interval.

2. Discrete-Time Kinematic Map: The discrete-time form of
the kinematic map (6) is given as follows:

q(l+1) − q(l) = hGν(l+1). (26)

Note that usingν(l+1) rather thanν(l) is consistent with our
desire to have the time-stepping subproblem be consistent
with all components of the dynamic model at the end of each
time step.

4This leads to an explicit time-stepping method with each step requiring the
solution of an LCP. If this assumption is not made, then the time-stepping method
is implicit and requires solving an NCP.

3. Discrete-Time Joint Constraints: DenotingbΨn(q(l), tl)
by bΨ(l)

n , the Taylor series expansion of the discrete-time
joint constraints (7) truncated after the linear terms is:

bΨ(l+1)
n ≈ bΨ(l)

n +
bΨ

(l)
n

∂q
(q(l+1) − q(l)) +

bΨ
(l)
n

∂t
h.(27)

Substituting equation (26), the linearized joint constraint (7)
becomes:

bΨ(l)
n + bW

T

n ν(l+1)h +
∂bΨ

(l)
n

∂t
h = 0. (28)

4. Discrete-Time Normal Contact Constraints: Denoting
uΨn(q(l), tl) by uΨ(l)

n , the Taylor series expansion of the
constraints (8) truncated after the linear terms is given by:

uΨ(l+1)
n ≈ uΨ(l)

n +
∂uΨ(l)

n

∂q
(q(l+1) − q(l)) +

∂uΨ(l)
n

∂t
h.(29)

Thus in the discrete-time LCP formulation, the nonlinear
unilateral contact constraint (8) will be replaced by the fol-
lowing approximate gap expression:

uΨ(l)
n + uW T

n ν(l+1)h +
∂uΨ(l)

n

∂t
h ≥ 0. (30)

Given thatup(l+1)
n = huc(l+1)

n anducn ≥ 0, equation (9) can
be replaced by:

up(l+1)
n ≥ 0. (31)

Last, for each unilateral contact, the gap at the end of the
time step must be orthogonal to the normal impulse. Com-
bining this fact with constraints (30) and (31) yields the fol-
lowing linear complementarity relationship inup(l+1)

n and
ν(l+1):

0 ≤ up(l+1)
n ⊥

(
uΨ(l)

n + uW T
n ν(l+1)h +

∂uΨ(l)
n

∂t
h

)
≥ 0.

(32)
Note that this relationship implies that the normal impulse
up(l+1)

n at the end of the time step can be nonzero only if
the gap at the end of the time step is zero. Constraint (32)
is again consistent with the goal of consistency at the end of
each time step.
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5. Discrete-Time Maximum Work Principle : The friction
law will be modified for the discrete-time setting by re-
placing force variables with impulse variables. Thus equa-
tion (11) becomes:

p
(l+1)
if ∈ argmax

{(
−v

(l+1)
if

)T

p′if : p′if ∈ Fi(p
(l+1)
in , µi)

}
,

(33)
wherep′if is an arbitrary vector in the setFi(p

(l+1)
in , µi).

As was the case during the formulation of the instantaneous
model, we cannot complete the formulation of the discrete-
time model without assuming a particular form ofFi.

3.1 The Discrete-Time Model as an LCP
Assuming that contacti is unilateral with isotropic Coulomb

friction, we have:

Fi(up
(l+1)
in , µi) = {up(l+1)

if : ||up(l+1)
if || ≤ µi

up
(l+1)
in , up

(l+1)
in ≥ 0}.

(34)
Figure 5 shows a circular friction limit set (shown dotted) at a
unilateral contact for particular values ofup

(l+1)
in andµi. This

circle, of radiusµi
up

(l+1)
in , is approximated by a convex poly-

gon containing the origin (e.g.,a nonagon as shown in Figure 5).
The vertices of the polygon are defined bynd scaled unit vectors
µidij that span the contact tangent plane defined byt̂i andôi.

ti
^

oi
^

pif

di4

di3

di2

di5

di6

di7

di1 di8

di9

Figure 5. Circular friction limit set approximated by a nonagon.

To constrain the friction impulseup(l+1)
if to lie within the

polygonal limit set, it will be represented as the convex sum of
vectorsdij . Letting β

(l+1)
ij denote the barycentric coordinate of

up
(l+1)
if associated with directiondij , the polygon can be repre-

sented as follows:

up
(l+1)
if = uDiβ

(l+1)
i∑nd

j=1 βi,j ≤ µi
upin

}
∀ i ∈ U , (35)

whereuDi is the matrix whosejth column is the unit vectordij

mapped into the configuration space of the system.
It remains to enforce the fact that at a rolling contact, the

friction impulse may lie anywhere within the limit set, but while
sliding, the friction impulse must maximize power dissipation.
This is accomplished through the following constraints:

0 ≤
(

uDT
i ν(l+1) + uei

uσ
(l+1)
i

)
⊥ u

β
(l+1)
i ≥ 0

0 ≤
(
µi

up
(l+1)
in − ueT

i
u
β

(l+1)
i

)
⊥ uσ

(l+1)
i ≥ 0



 ∀ i ∈ U

(36)
where us

(l+1)
i is a slack variable anduei is a column vector

of lengthnd with all elements equal to 1. The physical inter-
pretation of the slack variableus(l+1)

i is an approximation of
the magnitude of the sliding velocity at contacti. Given that
the conditions (36) are satisfied, when contacti is sliding (i.e.,
us

(l+1)
i > 0), the element ofuβ(l+1)

i corresponding to most direct
opposition to the sliding velocity will be nonzero and the mag-
nitude of the tangential impulse will beµi

up
(l+1)
i . In addition,

when contacti is rolling (i.e., us
(l+1)
i = 0), multiple elements of

u
β

(l+1)
i may be nonzero (typically two elements) and the friction

impulse vector may lie anywhere in the polygonal friction limit
set.

One important side-affect of the above approximation of the
Maximum Work Principle is that an entire cone of relative veloc-
ities at contacti lead to exactly the same friction force, because
that force maximizes energy dissipation. As the direction of slid-
ing changes, the direction of the friction force jumps from one
direction vector to the next (see Figure 6).

cif
u

υif Velocity
Cone

u

Linearized
Limit Set

Figure 6. Cone of relative velocities giving rise to the same friction force.

Combining the tangential complementarity conditions for all
unilateral contacts yields:

0 ≤
(

uDT ν(l+1) + uEuσ(l+1)
)
⊥ uβ(l+1) ≥ 0

0 ≤
(
U up(l+1)

n − uET uβ(l+1)
)
⊥ uσ(l+1) ≥ 0

(37)
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where the column vectorsuβ(l+1) and us(l+1) are formed by
stacking the vectorsuβ(l+1)

i and scalarsus(l+1)
i , DT

u is formed
by stacking the matricesuDT

i , uE is a block diagonal matrix with
nonzero blocks given byuei, andU is the diagonal matrix with
element(i, i) equal toµi.

Complementarity constraints for a joint can be written sim-
ilarly. In the case of a one-degree-of-freedom joint, the space of
relative velocities is one-dimensional and thus can be positively
spanned by a pair of vectors pointing in opposite directions. We
have:

0 ≤ (bDT
ν(l+1) + bEbσ

(l+1)) ⊥ bβ
(l+1) ≥ 0

0 ≤ (bβmax − bE
T bβ

(l+1)) ⊥ bσ
(l+1) ≥ 0

(38)

3.2 A Time-Stepping LCP
A time-stepping LCP is now at hand. Equa-

tions (26,28,32,37,38) constitute a mixed LCP5. Its solution
yields estimates of the contact forces and the generalized veloc-
ity of the system attl+1. This solution can then be substituted
into equation (26) to obtain an estimate of the system config-
uration attl+1. It is known that solutions always exist to the
simplified LCP derived by eliminating joints and by removing

the termsuΨ(l)
n and ∂uΨ(l)

n
∂t h from equation (32) (see [1]).

SinceM is symmetric and positive definite, it is invertible,
so we can solve equation (26) forν(l+1) and eliminate it to yield
a smaller mixed LCP. However, under the assumption that the
null space ofbW n is trivial6, then the mixed LCP can be con-
verted into a standard LCP. To do this, one solves equations (26)

and (28) forν(l+1) andbp
(l+1)
n and substitutes the results into

equations (32,37,38), which before substitution can be written as
follows:

0 ≤




uW T
n ν(l+1) + uΨ(l)

n /h + ∂uΨ(l)
n

∂t

uDT ν(l+1) + uE us(l+1)

bD
T
ν(l+1) + uE us(l+1)

U up(l+1)
n − uET uβ(l+1)

uβmax − uET uβ(l+1)




⊥




up(l+1)

uβ(l+1)

bβ
(l+1)

us(l+1)

bs
(l+1)




≥ 0.

(39)
We first cast equations (26) and (28) into matrix form:

[
M −bW n

−bW n 0

] [
ν(l+1)

bp
(l+1)
n

]
=

[
x1

x2

]
, (40)

5A mixed LCP is an LCP augmented with equations, in our case, equa-
tions (26,28)

6This is true usually if the bilateral constraints do not generate rigid loops.

where

x1 = uW n
up(l+1)

n + bD bβ
(l+1)

+ uD uβ(l+1) (41)

+ Mν(l) + pext

x2 = bΨ
(l)

n /h +
∂bΨn

∂t

(l)

. (42)

Inverting the matrix on the left side of equation (40) yields:

[
ν(l+1)

bp
(l+1)
n

]
=

[
A11 A12

AT
12 A22

][
x1

x2

]
. (43)

Letting B = −bW
T
n M−1bW n, thenA11, A12, andA22 are

defined as follows:

A11 = M−1 + M−1 bW nB−1 bW
T

n M−1 (44)

A12 = −B−1 bW
T

n M−1 (45)

A22 = B−1. (46)

Substituting back into inequalities (39) yields a standard
LCP(F, f) with F , f , andz given as follows:

F =




uW T
n A11

uW n
uW T

n A11
uD uW T

n A11
bD 0 0

uDT A11
uW n

uDT A11
uD uDT A11

bD uE 0
bD

T
A11

uW n
bD

T
A11

uD bD
T
A11

bD 0 bE

U −uET 0 0 0

0 0 −bE
T 0 0




f =




uW T
n r + uΨ(l)

n /h + ∂uΨn
∂t

uDT r

bD
T
r

0
bβmax




z =




upn

uβ
bβ
uσ
bσ




where

r = A11

(
Mv(l) + pext

)
+ A12

(
bΨ

(l)

n /h +
∂bΨn

∂t

(l)
)

.

(47)
Note that it is known that when there are no joints (i.e., rows
three and five are removed fromF , f , andz and columns three
and five are removed fromF ) and the sumuΨ(l)

n /h + ∂uΨn
∂t is

nonnegative, then a solution always exists.
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4 Example Problem
Figure 7 shows an elevation view of a rough uniform sphere

of unit radius and mass in contact with a fixed horizontal plane
in a uniform gravitational field. Since there are no joints,bΨn is
empty, and consequently, so arebW n, bD, bE, x2, A12, A22,
andB. This example was chosen, because of the existence of
easily obtainable closed-form solutions of the dynamic motion
of the sphere for certain initial conditions.

x

z
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n̂

gravity

Figure 7. Sphere on a Fixed Horizontal Plane.

Let the plane coincide with thexy-plane of a (right-handed)
inertial frame, with the inertialz-direction upward. Thus the nor-
mal directionn̂ at the contact, will always points in the inertial
z-direction and will pass through the center of the sphere. Thus
the gap function is independent of time and is given by the fol-
lowing simple expression:uΨn(q) = q3 − 1, whereq3 is the
z-coordinate of the center of the sphere. The coefficient of fric-
tion was assumed to have a constant value of 0.2. Thet̂ and
ô directions will always lie in thexy-plane, and we chose their
directions to be rotatedπ4 (R) about thez-axis from the inertial
x andy axes7. The matricesM , uW n, uD, uE, andU can be
seen to be constant throughout the motion. For this problem, the
various matrices are:

M =
[

I 0
0 2

5I

]
, uW n =




0
0
1
0
0
0




, uD =




1 −1 0 0
0 0 1 −1
0 0 0 0
0 0 1 −1
−1 1 0 0
0 0 0 0




,

uE =




1
1
1
1


 , U = 0.2, gext =




0
0

−9.81
0
0
0




.

7This rotation was caused by a quirk in our Matlab code, but is only relevant
in the discussion of the results plotted in Figures 8 and 9.

In in order to obtain a close-form solution, the sphere was re-
leased in contact with the plane and translating in thex-direction.
The corresponding time-stepping LCP(F , f ) has withF , f , and
z given as follows:

F =




1 0 0 0 0 0
0 3.5 3.5 0 0 1
0 3.5 3.5 0 0 1
0 0 0 3.5 3.5 1
0 0 0 3.5 3.5 1

0.2 −1 −1 −1 −1 0




(48)

f =




ν
(l)
3 + ψ

(l)
n /h− 9.81 h

ν
(l)
1 − ν

(l)
5

−ν
(l)
1 + ν

(l)
5

ν
(l)
2 + ν

(l)
4

−ν
(l)
2 − ν

(l)
4

0




z =




up(l+1)
n

β
(l+1)
1

β
(l+1)
2

β
(l+1)
3

β
(l+1)
4

uσ(l+1)




(49)

where the subscripti has been dropped, since there is only one
contact,(ν1, ν2, ν3) = (vx, vy, vz) are thex-, y-, and z-
components of the linear velocity of the center of the sphere, and
(ν4, ν5, ν6) = (ωx, ωy, ωz) and thex-, y-, andz-components
of the angular velocity of the sphere.

With the following initial conditions:

initial configuration: q = [0 0 1 | 1 0 0 0]T

initial velocity: ν = [2 0 0 | 0 0 0]T
, (50)

the exact solution of the sphere’s motion was found8. The sphere
initially slides in thex-direction, gathering angular velocity in
the y-direction until the transition time,ttrn = 2vx0

7µg ≈ 0.291,
where vx0 is the initial velocity in thex-direction andg =
9.81m/s/s is the acceleration due to gravity. After the transition
time, the sphere rolls with constant velocity in thex-direction
and angular velocityωy = 5

7vx0 ≈ 1.429 in they-direction. The
remaining 4 velocity components are zero.

The numerical solution was computed over the time interval
[0, 0.6] with h = 0.12. The method matched the exact velocities
as shown in Figure 8, which plots the sphere’s velocity compo-
nents on top of the exact solution (shown as dotted lines). It
should be noted that our method matched the exact solution, be-
cause one of the friction directions chosen (column 2 ofuD) was

8Note that the last for elements of initial configuration,(1, 0, 0, 0), is the unit
quaternion, and it’s initial value has no bearing on the results in terms of forces
and velocities.
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pointing exactly in the−x-direction. Since every nonzero fric-
tion force for this example was acting in this direction, there was
no error caused by friction cone linearization. Similarly, since
Ψn was linear, no error was generated by the linear approxima-
tion in equation (30).
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Figure 8. Analytical and Numerical Velocities with h = 0.12.
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Figure 9. Analytical and Numerical Forces with h = 0.12.

Figure 9 shows the components of the friction force over
time as predicted by our method. Note that bothct andco were
nonzero due to the misalignment of thet̂ andô directions with
respect to thex- and y-axes of the inertial frame. Again, the
analytical solution is plotted with dotted lines. This example was
rerun with smaller step sizes to demonstrate convergence to the
exact solution.

5 Conclusion
We have presented complementarity formulations of the

instantaneous and discrete-time dynamics of general, spatial,
multi-rigid-body system with joints and unilateral contacts with a
form of dry friction. Details on the derivation of the continuous-
time or instantaneous model can be found in [8]. The extension
of the instantaneous model to include a friction moment along
the contact normal and discussions of other examples can be
found in [9]. The formulation of the same basic discrete-time
model presented here can be found in [7]. The minor extension to
include load-independent dry friction in one-degree-of-freedom
joints has not previously been presented. Last, a higher-order
version of the discrete-time method presented here has been im-
plemented in the software package Umbra at Sandia National
Laboratories. Movies of animations produced with Umbra can
be found atwww.cs.rpi.edu/ ∼trink .
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