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Abstract - Grasp and manipulation planning of
slippery objects often relies on the "form’ closure” grasp,
which can be maintained regardless of the external force
applied to the object. Despite its importance, a guantita-
tive test for form closure valid for any number of contact
points is not available. The primary contribution of this
paper is the introduction of such a test formulated as a
linear program, of which the optimal objective value
provides a measure of how far a grasp is from losing
form closure. While the test is formulated for frictionless
grasps, we discuss how it can be modified to identify
erasps with "frictional form closure.”

I. INTRODUCTION

In grasp and manipulation planning, the two most
important classes of grasps arc known as "form closure”
and "force closure” grasps. These terms are borrowed
from the field of machine design in which they have
been in use since 1875, when Reuleaux [11] studied the
mechanics of some “"early machines.” One machine was
the water wheel, whose axel was usually laid in a groove
of semi-circular cross-section. Proper operation required
the gravitational force of the wheel 10 maintain or "close”
the contact between the groove and the axcl. Thus the
terminology "force closure” came to describe contacts
whose maintenance depended on an externally applied
force. If instead, the contact was maintained by virtue of
the geometry of the contacting elements, (as would be
the case of an axel in a cylindrical hole), then the term
“form closure" was adopted. This terminology is still in
use today in the mechanisms research community (see
[5]) and was first introduced into the robotics research
community by Salisbury {12]. Since then, motivated by
the mathematical interpretation of vector "closure,” {3]
some authors (notably, Nguyen [9], Mishra [8], and Sas-
try [6]) have chosen to use "force closure” to mean what
Reuleaux and Salisbury meant by form closure. In this
paper, we follow the president set by Reulcaux and Salis-
bury by adopting the following definitions.

Definition: Form Closure: A fixed set of contacts on a
rigid body is said to exhibit form closure if the body’s

equilibrium is maintained despite the application of any
possible externally applied wrench (force and moment).
Equivalently, the contacts prevent all motions of the
body, including infinitesimal motions.

Definition: Force Closure: A fixcd sct of contacts on a
rigid body is said to exhibit force closure if the mainte-
nance of the body’s equilibrium requires the application
an externally applied wrench. Equivalently, the contacts
do not prevent all motions of the body.

While the open literature abounds with papers on
grasping and grasp planning (sce [10] for a good bibliog-
raphy of grasping literature published before 1988), an
efficient quantitative test for form closure valid for any
number of contact points is not available. Reuleaux [11]
studied the form closure problem for rigid lamina res-
tricted to move in a plane. He showed that at least four
higher-pair (point) contacts were required to prevent all
motion of a lamina. He also provided a graphical tech-
nique to test a set of four contacts for form closure.
These ideas were used by Nguyen to develop algorithms
to synthesize form closure grasps of given rigid lamina
and were extended for use with three-dimensional
objects [9]. The conditions for form closure of an arbi-
trary three-dimensional rigid body were first given by
Somoff, in 1900 [13], who established that a minimum of
seven point contacts was necessary. Much later, Laksh-
minarayana [S] described an approach to synthesizing
form closure grasps of three-dimensional frictionless
objects and gave an insightful physical interpretation of
the associated cquations.

Mishra et al. [8] were the first to place an upper
bound on the number of contact points necded for a form
closure grasp of a frictionless object. They showed that
if the object was "nonexceptional” (i.e., the object’s sur-
face was not one of revolution), then twelve contact
points were sufficient to balance all possible external
wrenches. This bound however, seemed loose to Mark-
enscoff er al. who succeeded in "closing the gap.” [7]
They proved the stronger result that any nonexceptional
frictionless object can be grasped in form closure with

1 Portions reprinted, with permission, from an upcoming issue of the IEEE Transactions on

Robotics and Automation.
0-7803-0737-2/92$03.00 1992©IEEE



only seven contact points by considering infinitesimal
perturbations of the contact points away from the maxi-
mal inscribed sphere. They stated that their proof could
be used as the basis for algorithms for synthesizing form
closure grasps which would imply that form closure tests
could also be developed, but no algorithms were
presented. For the purpose of grasp synthesis, Nguyen
[9] and Mishra [8] developed grasp (ests that indicated
only the cxistence or nonexistence of form closure.
Howevcr, the binary nature of the tests motivated Kirk-
patrick [4] to formulate a quantitative tcst for "positive
grips" with form closure based on Steinitz’s Theorems.
Unfortunately, these results are restricted to frictionless
grasps of polyhedra with at least 12 contacts occurring
only at "nonsingular" points on the object’s surface,
where singular points are those for which the surface
normal is ill-defined. Thesec restrictions are seen as Sig-
nificant drawbacks, since in dexterous manipulation it is
common (and occasionally dcsirable) for fcwer contacts
to occur and for some of them to be on vertices of the
object.

A. Contributions

The primary contribution of this paper is the for-
mulation of a quantitative test for detecting form closure
in frictionless grasps. This test takes the form of a linear
program that produces a crude measure, qualitatively
similar to Kirkpatrick’s, of how "far" a grasp is from los-
ing form closure. In contrast to Kirkpatrick’s test, our
test is valid for any number of frictionless contacts as
long as their locations and normal directions arc known.
The problem of contacts occurring at nondiffercntiable
surface points is not a consideration here, because a
unique, computable normal is available in all but the
ephemeral and pathological cases of a convex vertex in
contact with either a convex edge (spatial case only) or
another convex vertex. Since the test relies on gecometric
information, it is valid for frictional grasps, but it does
not quantify friction’s stabilizing effects. However, we
discuss how to modify the test to explicitly include fric-
tion effects, so that grasps which do not have form clo-
surc due to their geometry can be tested for "frictional
form closure." [1}

The secondary contribution of this paper is the
development of a binary test for the identification of fric-
tionless grasps belonging to the subclass of force closure
grasps called strong force closure grasps. This subclass
is identical to grasps of "partial restraint" considered by
Lakshminarayana [5] and deserves special recognition
because maintaining strong force closure grasps during
dexterous manipulation requires compliant control of the
fingers, which is not the case for other force closure
grasps. Given Lakshminarayana’s terminology, "partial
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restraint,” one might also refer to this subclass of grasps
as partial form closure grasps. However, we prefer the
name strong force closure 10 emphasize that the grasps
have force closure.

B. Paper Layout

In the remaining scctions, three linear programs
are introduced which can be used to quantify and detect
grasp qualities. The test developed in Section 2 is able to
detect and quantify form closure in both planar and spa-
tial frictionless grasps. This test then serves as the basis
for the frictional form closure and frictionless strong
force closurc tests introduced in Sections 2.1 and 3
respectively. The introduction of each test is followed
by an illustrative example problem.

I1. IDENTIFICA'TION OF FORM CLOSURE

According to the definition of Reuleaux and Salis-
bury, given in Section 1, a grasp has form closure if and
only if object equilibrium is possible regardless of the
external wrench. If we assume a point contact model
with Coulomb friction, then for a grasp with #, contacts,
the equilibrium equations and Coulomb friction con-
straints may be written as follows (sec [14]).

We > -g,, forall g,,, € E® Q)
¢cDe=0 (2)
¢, =20 3)

where E° represents the 6-dimensional Euclidean spacc
(6 is the number of degrees of frecdom of the uncon-
tacted object), 8., is the external wrench applied to the
object, W is the 6 X 3n, wrench matrix formed by the

horizontal concatenation of the individual contact
wrench matrices, W;,
; f; 0;
Wi - » (4)

r; xf; 1 xf 1 X6

r; is the position of the i* contact point, fi; is the
contact’s unit normal directed inward with respect to the
object, f; and 6; are orthogonal unit vectors defining the
contact tangent plane, D is the 3n,. x3n, diagonal
Coulomb friction mairix formed by the block diagonal
concatenation of the individual Coulomb friction
matrices, D; (see equation (5)), ¢ is the vector of wrench
intensitics of length 3n, formed by the vertical concate-
nation of the individual wrench intensity vectors, ¢;,

“iz 0 0 Cin
Di = 0 _1 0 Ci = Ci[ 5 (5)
0 0 -1 .



and ¢, is the normal wrench intensity vector of length n,
formed by the vertical concatenation of the individual
normal wrench intensitics, ¢;, .

Partitioning equilibrium equation (1) to expose the
tangential and orthogonal wrench intensity vectors, ¢,
and ¢, , which describe the friction wrcenches yields

Cpn
{Wn WI Wo:l C| = Bext -

€

(©6)

where ¢, and ¢, are formed by vertically concatenating
the elements ¢, and c;,, respectively, and the normal,
tangential, and orthogonal wrench matrices, W,, W,
and W, arc formed in correspondence with the defini-
tionsofe,,c,,and ¢,.

The form closure conditions when friction is
absent can be obtained from relationships (1), (2), and
(3) by sectting Coulomb friction matrix, D, and the
tangential and orthogonal wrench intensity vectors, ¢,
and ¢, , 10 zero, yielding

Wn Cr = 8eu > for all Lext € E6 (7)

3)

From Somoff’s work, [13] two neccssary conditions for
form closure are that the normal wrench matrix, W,,, be
full rank and have more columns than rows. Therefore,
W,, has a nontrivial null space which allows us to rewrite
the form closurc requircments in terms of the row and
null space components of the normal wrench intensity
vector as follows

c,>0.

Wn Cmrow = —8ext » for a” Bext € E6 (8)
Wncn,null - 0 (9)
Cn./row + Cn,null 2 O s (10)

where ¢, ., and ¢, ,,, are the null and row space com-
ponents ¢, , respectively. With relationships (8-10) in
mind, Salisbury showed that a sufficient condition for
form closure is the existence of a vector, ¢,y , with all
positive clements, which 1s equivalent 10 Mishra’s result
requiring that the origin of the wrench space lic strictly
within the convex hull defined by the columns W, [8].
Next we usc the facts that W, and its pscudoinverse pro-
vidc one-to-one and onto mappings between the spaces
of g.,, and ¢, ,,,., and that g, is arbitrary. As such, any
or all elements of ¢, . can bc made negative by the
proper choice of g,,,. This places the onus of ¢, ’s non-
negativity squarely on ¢, . Therefore, form closurc
requires that equation (9) admit at least one strictly posi-
tive solution, ie., the following relationships must be
feasible
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Wncn,null = 0 (9)

(11

If no such solution exists, then one can easily find an
external wrench, g,.., that cannot be balanced. If a
strictly positive ¢, docs exist, then it may be arbi-
trarily scaled to make ¢, nonncgative for any finite
choice of g,,,. In fact, in this case, all wrench intensitics
may be increased without bound, which in turn, implies
that the joint torques may be incrcased without bound,
t0o. This observation turns out to be quite uscful in tra-
jectory planning for dextcrous manipulation, as it implies
that we can squeeve as hard as we like without disturbing
the form closure character of the grasp; a fact which con-
siderably reduces the accuracy required of the force con-
troller. However, it is important to note that Cutkosky
has shown that compliant effects can cause grasp insta-
bility as the joint torques increase [2].

cn,null > 0 .

The form closure mecasure we propose, is the
scalar value, d*, of the minimum elecment of ¢, ..
where c,fywlz is the mull space vector with largest
minimum element. If ¢" is strictly positive, then the
grasp has form closure, otherwise the grasp has force
closure. This measure is the optimal objcctive value of
the following linear program

Maximize d (12)
Cr,mal

Subject to: W, ¢, =0 )

Cn,null*dzo (]3)

d >0 (14)

Acn,null >h (15)

where d is a slack variable and d is a vector with all cle-
ments cqual to . Inequality (15) may be any set of con-
straints that is feasible for ¢, ,,; = 0 and that prevents
the lincar program from becoming unbounded. Note that
it inequality (15) approximates the unit ball, then our
measure is quite similar to the grasp "efficiency” given
by Kirkpatrick [4]. Howevcer, Kirkpatrick’s measure 18
valid only for grasps with 12 or more contact points (6 or
morc in the planar case), whereas our measure is valid
for grasps with any number of contact points.

A. Example |

Consider a rectangle subjected to a planar grasp
with four friclionless contact points as shown in Figure 1.
It can be shown analytically, that this grasp has form clo-
sure if the intersection of the third and fourth contact
normals lic inside the rectangle, i.e. o lics in the interval

(1.052, %). If o= —;E then the object may translate vert-
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Figure 1: Rectangle with Four Frictionless Contact Points.
ically. For this Example, the linear program defined by
statements (9) and (12-15) was used to quantfy form
closure for various values of &. A and h were chosen so

that inequality (15) would represent a cube with edges of
length 2, centered on the origin of the space defined by

Cn,null
-1 -1
Sr !

where I is the 4 x 4 identity matrix and 1 is the four-
vector with all elements equal to 1. The normal wrench
matrix was formed using the coordinate directions shown
and summing the moments about the upper right-hand
corner of the rectangle yielding

00 1 —cos(a)
W,=111 0 —sin(o)|.

71
-0 — 0
4
Table 1, below, summarizes the results. Note that the

grasp "furthest" from losing form closure is the one for
which o = 1.2 Radians.
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o d’ closure type
1.04 0.0 force
1.06 0.020 form
1.1 0.097 form
1.2 0.300 form
1.3 0.267 form
14 0.170 form
1.5 0.071 form
1.56 0.010 form
1.5707 || 0.0 force
1.58 0.0 force

Table 1: Quantification of Frictionless Form Closure.

Note that the computation time required to compute each
d" is small since its value requires the solution of a
linear program with nullity (W) + 1 (in this example, 2)
variables and g, + 1+ nullity (W) + nppung  (in  this
cxample, 15) constraints where ng,, is the number of
degrees of freedom of the uncontacted object, nullity (W)
is the nullity of the normal wrench matrix, and ny,,,g iS
the number of bounding planes used to approximate the
unit ball. However, this computation time cannot be
compared to Kirkpatrick’s since there are too few con-
tacts tor his method to apply.

B. Frictional Form Closure

Frictionless form closure hinges upon the ability of
the clements of the normal wrench intensity vector, ¢,
to increase indefinitely. If under the frictionless assump-
tion, a grasp does not have form closure, then one may
test the grasp for "frictional form closure” [1] through the
following procedure. First, using equations (1-3), deter-
mine which set of elements of ¢, can be increased
without bound?. Second, include the corresponding
columns of W, and W, and elements of ¢; and ¢, in the
wrench matrix and wrench intensity vector in the form
closure test given by equations (9) and (12-15) (sce
Example 2 below for clarification). However, because
the individual tangential and orthogonal wrench intensi-
ties, ¢; and ¢, , may be positive or negative, inequality
(13) should not be modified. Thus our test for frictional

2 Determining the set or sets of element of ¢,
could be accomplished by approximation the fric-
tion cone constraints (2) by systems of linear ine-
qualites and solving one or more lincar programs
designed to drive elements of c,,,, toward infinity.
However, the computational complexity of such a
test could make it impractical.



form closure takes the tollowing form

Maximize d (12)
Co it

Subject 1o: We,u =0 (18)

Coput —d 20 (13)

d =0 (14)

Acm“ >h (19)

where W and ¢, are W, and ¢, ,, augmented by
adding the columns of W, and W, and the elements of
¢, and ¢, corresponding to the elements of ¢, which can
be increased indefinitely. This test procedure amounts to
determining which friction wrenches can act as rigid
structural restraints when squeezing sufficiently tightly.

C. Example 2

Consider the three-point grasp of the triangle
shown in Figure 2 below.

XA
B

®

)
“yolhk
e
A

v

Figurc 2: Triangle with Frictional and Frictionless Contacts.

If all contacts are assumed 10 be frictionless, then the
grasp does not have form closure. However if we
assume that contacts 1 and 2 (on the vertical edge) are
frictionless and contact 3 has coefficient of friction p>0,
then it can be shown geometrically {9] that as long as
tan'u>P and [,>[3>/,, then all external wrenches,
..., may be balanced by squeezing tightly enough. This
implies that the tangential wrench and intensity
corresponding to the third contact should be included in
the frictional form closure test defined by statements
(12-14), (18), and (19).

The augmented wrench matrix and wrench mten-
sity vector are given as follows

—cos(B)  —sin(B)
sin()  —cos (B)

{1 I b 0
! : cos(B)

1 1

W=10 0 (20)
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0

|th 1nnudl

Coonul = Con null

¢ 3n‘nullj

For this Example, we applied the frictional form closure
test for different positions of the third contact, {5, with all
other parameters fixed: [, =0, [,=1,1=0.3, and B=15".
Table 2 below summarizes the results. A and h had the
same values as in Example 1.

L

[3 d* closure [ype C;n,null C:(Zn null l
-0.001 || 0.0 torce !
0.001 || 0.001 | frictional form || 0.001 1.0
0.1 0.104 | frictional form || 0.104 | 0932 |
03 0.311 | frictional form 0311 0.725 |
0.5 0.518 | frictional form 0.518 0.518
0.7 0.311 frictional form 0.725 0.311
09 0.104 | frictional form 0.932 0.104
0.999 || 0.001 | frictional form 1.0 0.001
1.001 || 0.0 force

Table 2: Quantification of Frictional Form Closure.

When the grasp has frictional form closure, the null
space components of ¢, are all positive. This indicates
that the object can be squeezed as tightly as one likes. In
the case of the force closure grasps, one or more ele-
ments of ¢, ., are negative, so if force closure is possi-
ble at all, squeezing is limited. Note that the clements of
¢, naq are not shown for the force closure grasps,
because the subroutine used to solve the fricional form
closure test only returned the flag "infeasible” and not a
null space basis vector. In addition, ¢3, g and Ca,
don’t change appreciably with /5 and so are not listed
here.

III. IDENTIFICATION OF STRONG FORCE CLOSURE

All elements of the normal wrench intensity vector
of a form closure grasp can be increased indefinitely
without disturbing the equilibrium of the grasp. For most
force closure grasps, all wrench intensities have finite
bounds. Equivalently, manipulation maintaining form
closure requires compliant finger motion, whereas main-
taining force closure usually does not. In this Section,
we define the subclassification of force closure grasps
which we call strong force closure grasps. This subclas-
sification is equivalent to Lakshminarayana’s grasps of
"partial restraint.” Grasps in this subclass deserve recog-
nition, because their maintenance during manipulation
requires compliant motion control, as would be the case
for form closure grasps, but they can become unstable



since they are, in fact, force closure grasps. As in the
previous Scction, we concentrate on the frictionless case
and discuss the inclusion of friction cffects later.
Definition: A frictionlcss grasp is said to have strong
force closure if it does not have form closure and a sub-
sct of the elements of the normal wrench intensity vector
can be increased without bound.

Since a strong force closure grasp does not have
form closure, no strictly positive solution of equation (9)
may exist (i.e., relationships (9) and (11) are infcasible).
However, given our definition, at least onc nonncgative
solution must exist {i.e., relationship (11) is relaxed by
allowing cquality with zero). If a nonnegative solution
does not exist, then no element of the normal wrench
intcnsity vector can be increased indefinitely.

Theorem: A frictionless grasp has strong force closure if
and only if it docs not have form closure and there exists
a nonirivial vector, ¢, ,,;, In the null spacec of W, with
all nonnegative elements, such that if the i* clement of
Cn 0w 1S NCgative, then the i “ element of Cp 18 POSI-
tive.

Proof: The quasi-static assumption implies that the grasp
under consideration is in equilibrium and therefore satis-
fics the relationships (7) and (3). Solving cquation (7)
and substituting into incquality (3) yiclds

+Cn,null 20, (]0)

where ¢, 0, = =W, 780, €t = (W, I W, = Dk, 0, ot is

a positive scalar, and k, is an arbitrary unit vector of
compatible length.

cn - Ln,row

If ¢, na >0 exists, then by definition, the grasp
has form closure: not force closure. Next, note that
C,ma With all nonpositive elements, (i.e., ¢, uu <0),
prevents the unbounded increasc of ¢, . Therefore,
lor a grasp to have strong force closure, it is necessary
that a nontrivial ¢, ,, exists such that ¢, 0.
Finally, 1t ¢y y0n be the i clement of ¢, ,,,, . Itis clear
from cquation (10) that if ¢;, ,,, 1S ncgative, then ¢y,
must be positive.

In light of the above proof, a test for trictionless
strong force closure, must allow some of the elements of
€, mu 'O remain zero while encouraging others to be
positive. This can be accomplished with the following
lincar program
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Maximize y=1¢, (22)
Subject to W, ¢, =0 9
W€ row = ~Bext (23)

oo €t > 0) (10)

a2 0 (24)

Ac, u 2h. (15)

where y” is the optimal value,

During manipulation under compliant control the
matrix W, , which has dimension (6 X #, ), is typically of
full rank and usually has 7 or more columns. If the nul-
lity of W, is one, then the solution of the above lincar
program indicates precisely which clements of ¢, may be
increased and which may not: if C;L,nuu is zero, then ¢; ,
may not be increased; all others may (sec Example 3
below). When the nullity is greater than one, then the
solution returned is just onc of many possible and will
not necessarily reflect which intensities may be
increased. Brute {orce circumvention of this problem
could be achieved by solving the linear program onc time
for each contact with the objective being to maximize the
corresponding component of ¢ rather than the sum
of the clcments.

aaull >

As illusirated in Example 3 below, our strong force
closure lest is binary in nature. This comes from the fact
that the null space components of some clecments of
Co.m arc zero-valued. However, a quantitative result
similar to that produced by the form closure test could be
formulated in two stages. First apply the binary test to
identify the nonzero components of ¢, ,,,; and then apply
the form closure test with the slack variable, d, addced
only to those components.

A. Example 3

Consider a rectangle subjected to a planar grasp
with four frictionless contact points as shown in Figure 3.
It can be shown that this grasp has strong force closure if
-1.00<a £1.00. It does not have form closure, since
the object may translate verticallé/.. . Wsing the coordinate
directions shown and summing the moments about the
object’s center of mass yields the following normal
wrench matrix

0-1-11
W,={10 020 (25)
0-1 1 a
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Figure 3: Square in Frictionless Strong Force Closure Grasp.

Table 3 below illustrates how the components of ¢,
and ¢, ,, vary with ¢. A and h had the same values as
in Example 1.

* * ¥

a y closure [ype Cronutl 2 Crn null 3
-1.001 || 0.0 force
-1.000 1| 2.0 | strong force 0.0 1.0
-0.5 2.0 | strong force 0.25 0.75
-0.0 2.0 | strong force 0.5 0.5
0.4 2.0 | strong force 0.7 0.3
0.7 2.0 | strong force 0.85 0.15
1.00 2.0 | strong force 1.0 0.0
1.001 | 0.0 force

Table 3: Detecting Frictionless Strong Force Closure.

The values of ¢, ., and ¢, .4 are not shown since
Crmatn =0 and ¢y nus =1 for all values of a. This
implies that ¢, cannot be altered by squeezing and so
should not be included in optimizing the grasp (with
respect to a). Letting d” be defined as the maximum,
minimum element of ¢, 2+ Cnpt 3 ANA Cp 4 OVET
all values of @ indicates that centering contact 4 between
contacts 2 and 3 is "optimal.”

B. Frictional Strong Force Closure

To include the effects of friction in the strong
force closure test, one could proceed as for the torm clo-
sure test by identifying the frictional contacts whose nor-
mal wrench intensity components can be increased
without bound. However, this test would only be useful
for grasps which do not have strong force closure
without considering friction and do not have form clo-
sure when including friction, but do have strong force
closure when friction is considered. Although it has not
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been proven, we suspect that any grasp which has fric-
tional strong force closure has frictional form closure.
Thus, if our suspicions are true, then a test for {rictional
strong force closure would be unnecessary.

IV. CONCLUSION

A desire to solve dexterous manipulation planning
problems has highlighted the need for computational pro-
cedures for identifying and quantifying form closure
grasps. Toward this end, we have developed a linear
program whose optimal objective value provides a meas-
ure of how far a grasp is from losing form closure. For
situations in which it would be desirable to maintain
form closure at all times (e.g., in micro-gravity environ-
ments), our test would be particularly useful for both
planning and monitoring grasp "health." To our
knowledge, our form closure test is the first quantitative
test valid for any number of contact points.

We have also derived a second test, binary in
nature, which one can use to identify frictionless grasps
of "partial restraint,” which we call strong force closure
grasps. The distinction between form closure and strong
force closure is important, because while form closure
grasps can always be maintained (given sufficient hand
strength), strong force closure grasps cannot. Thus dur-
ing manipulation planning, if a grasp has form closure,
one need not be terribly concerned with the external
wrench applied to the object, whereas otherwise,
knowledge of the external wrench is crucial. It is also
important to recognize strong force closure grasps,
because unlike force closure grasps, their maintenance
during dexterous manipulation requires some form of
complaint control.

It is possible to apply the work presented above to
optimal grasping in a rather straight forward way,
exhaustively evaluating a subset of all possible grasps.
Such an approach would be exceedingly computationally
intensive and would therefore be of little use in real-time
grasping and manipulation tasks. One fruitful avenue of
rescarch would inviolve the development of grasp
systhesis algorithms which use the quantitative results
given above, but do not require evaluation of huge
numbers of potential grasps. This should be possible by
applying geometric forms of the necessary and sufficient
conditions for form closure [9] to large regions (i.e.,
planar faces) of the grasped object.
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