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Abstract

During the assembly of a product, it is vital that the
partially completed assembly be stable. If the assem-
bly is unstable, then it must be fixtured to stabilize it
before retrieving the next part or subassembly. This
paper presents a stability test and a new approach to
automatically generating the positions of a small set of
fixture elements (fixels) that will stabilize an assem-
bly. The stability test and the fixel positioning ap-
proach consider both the translational and rotational
degrees of freedom of each part. Since all the rele-
vant mechanical constraints are linear functions of the
contact force magnitudes and the components of the
velocities of the parts, linear programming techniques
can be used with great efficiency.

1 Introduction

While assembling a product, it is necessary to guar-
antee that all the parts already inserted remain in
place until the next part is inserted. To guarantee this,
we must ensure that contacts among the parts and
with the fixtures are sufficient to stablize the assem-
bly. In this paper we will present an efficient method
for testing if an assembly is stable, and, if it is not,
generating a set of additional fixture contact points,
known as “fixels,” that will stablize it.

An assembly is considered stable if all possible in-
finitesimal motions of the parts increase the total po-
tential energy of the system. Parts may rotate as
well as translate, and different parts may simultane-
ously be moving in different directions. We will as-
sume that all parts are rigid polygons with known
shapes and masses, that all contacts are frictionless,
and that all parts are initially at rest in known posi-
tions and orientations. In the interest of brevity, only
the two-dimensional case is presented here, however
the algorithm is easily extended to three-dimensional
assemblies[16] and some three-dimensional results will
be given. Overcoming the frictionless assumption is
more difficult, but to assume the absence of friction
when testing for stability is actually quite sensible in
production planning applications. Any assembly that
is stable without friction will certainly be stable with
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friction, and assemblies that are held together only
by friction may well be destablized by vibrational dis-
turbances in the workplace. Relaxing the assumption
that parts are polygonal presents no theoretical diffi-
culties and does not affect the efficiency of the stability
test. It does, however, make it more difficult to gen-
erate the set of stabilizing fixels.

The stability test presented here is actually a
straight-forward application of techniques previously
developed for grasping and dexterous manipulation
applications[13] and has been formulated, but not im-
plemented by Palmer[12]. The test requires only the
solution of a set of linear equations and inequalities
and can be done quite quickly using a linear program
solution algorithm, e.g. the simplex algorithm. Both
the velocity-domain formulation and the dual force-
domain formulation will be presented here.

The primary contribution of this paper is a method
of finding the contact points for a set of rigid fixture
elements, called fixels, which will stablize an unsta-
ble assembly. This can be viewed as a first step in
the automated design of fixtures. The method in-
volves parametrizing fixel locations along all reachable
edges, and then using the simplex algorithm to mini-
mize the sum of the magnitudes of the contact forces
on those points. All fixels with zero contact forces are
discarded, leaving a small set of fixels that stabilize
the assembly.

1.1 Background

Previous work in assembly stability analysis falls
roughly into two categories: approaches that rely on
the Newton-Euler equations of motion[3, 4, 7, 12] and
those which utilize intuitive, qualitative ad hoc pro-
cedures [6, 7, 8, 10]. Researchers who adopt quali-
tative procedures for stability testing often cite the
complexity of solving the required equations as a rea-
son for their choice. We find, however, that the rel-
evant equations represent a linear program and can
be solved very quickly using the simplex algorithm,
and they model the system much more realistically
and completely than most of the ad hoc procedures
mentioned above.

This paper builds primarily on a stability test devel-
oped by Palmer[12], who studied the stability of gen-
eral systems of polygons under the influence of gravity
and in contact with or without friction. Palmer de-
fined six stability classes which all collapse, in the fric-
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Figure 1: Definition of contact points and normal vectors for edge-vertex, edge-edge, and vertex-vertex cases

tionless case, to a pair of dual classification, referred
to as “guaranteed stability” and its dual, “potential
instability.” In related work, Trinkle[14] derived anal-
ogous stability conditions for a single grasped fric-
tionless object referred to as the “velocity formula-
tion” and its dual, the “force formulation.” When the
velocity or force formulation is extended to multiple
grasped objects and the finger velocities are set to
zero, Palmer’s and Trinkle’s stability tests are iden-
tical. Since the test can be formulated as a linear
program, stability can be determined efficiently with
the simplex method.

This paper goes beyond a simple stability test. It
shows how a variant of the force formulation can be
used to find a small set of fixel positions that will sta-
bilize an unstable assembly. The approach requires
the solution of a single linear program in which the
fixel locations (and the contact forces) appear as vari-
ables. With the exception of Fahlman’s work, previous
approaches to automated fixture design have been de-
veloped for only a single part (for example, see [1, 5]),
and so they cannot be applied to the problem consid-
ered in this paper.

Fahlman[7] designed and implemented a “blocks
world” task planner that automatically determined as-
sembly plans for block structures. Some of the struc-
tures required temporary supports and counter bal-
ances, because not all partially completed assemblies
were stable. When unstable subassemblies had to be
used in order to complete the assembly, the planner es-
timated the fall-down motion of the blocks and identi-
fied the downward moving surfaces. Then, when pos-
sible, temporary scaffolds were placed to support those
surfaces before the destabilizing block was placed.

Fahlman’s stability test was not accurate, because
he did not solve the required equations simultaneously.
Instead, to save computation time, he used ad hoc
rules to decouple the system of equations. As a result,
his technique for finding extra supports to stabilize
an assembly is not reliable. By contrast, the method
we present here, solves all relevant equations simul-
taneously. When the equations have no solution, no
stabilizing fixture exists. Otherwise, our approach will
find the positions of a set of fixels which stabilizes the
assembly.

2 Contacts

The first stage in analyzing the stability of an as-
sembly is to discover the locations and orientations of
the contacts among the parts. This is fundamentally
problematical, because a geometric model of an assem-
bly can never be a precise representation of the real
assembly. It is quite possible for small inaccuracies to
significantly affect the stability of the assembly. For
the purposes of our analysis, however, we will assume
that the locations and normals of the contacts can be
derived from the geometric model with sufficient ac-
curacy.

Parts will be labeled by indices 1 < ¢ < ny, where
ny is the number of movable parts. Unmovable parts,
such as fixtures and table-tops, are not labeled. Each
movable part may have a different coordinate frame,

B;, defined for it.

Contacts will be labeled by indices 1 < k£ < n.,
where n. is the number of contacts among all the parts
and fixtures. We define P(k) to be the set of movable

parts involved in the the k*® contact. This will always
be a set of size one (if the contact is between a movable
part and an unmovable part) or two (if the contact is
between two movable parts).

Let k be a contact and ¢ € P(k) be a movable part
involved in that contact. That contact will be char-
acterized by its location ry ; and its unit normal iy ;.
Both are expressed in part ¢’s coordinate frame, B5;,
and the normal is of unit length and directed inward
with respect to part :. Thus, if P(k) = {¢,7}, then
(g, 0y ;) and (rg;, i ;) describe the same contact
with oppositely directed normals represented in pos-
sibly different coordinate frames.

The existence of a contact means that there can
be no relative motion between the contacting parts
that causes interpenetration, i.e., the relative linear
velocity of the contact point on part ¢ with respect to
the contact point on body j may not have a component
in the direction fiy j (the contact normal directed away
from ¢ and into j).

Among two-dimensional polygons, contacts can be
classified into three types: vertex-edge, edge-edge,
vertex-vertex. In vertex-edge contacts, as shown in
figure la, the normal vector would simply be perpen-
dicular to the edge. Edge-edge contacts can be mod-
eled by a two discrete contact points, one at either end
of the contact segment as shown in figure 1b. This



simplification does not allow us to represent arbitrary
force distributions along the edge, but for our purposes
it is only necessary that the kinematic constraints are
correctly represented and that any resultant forces and
moments that could arise from an arbitrary force dis-
tribution along a frictionless edge-edge contact be rep-
resentable. In general, any planar contact region could
be modeled as the set of vertices of its convex hull[2].

There are two kinds of two-dimensional vertex-
vertex contacts: convex-concave, and convex-convex.
(Two concave vertices can never be in contact.) The
convex-concave case can be treated as a pair of con-
tacts between the convex vertex and each of the two
edges incident on the concave vertex, as shown in fig-
ure lc. This 1s because the concave vertex is con-
strained by both edges.

The convex-convex case is more difficult, because
the contact normal is “undetermined”[12]. Some au-
thors assume this case does not occur, but in the ide-
alized world of geometric models it is, in fact, quite
common. There are two approachs commonly used
to model convex-convex vertex contacts: the sharp-
vertex model and the round-vertex model.

In the sharp-vertex model, it is assumed that the
vertices are perfectly sharp points. This means that
one vertex could either slide to the left of the other
vertex, or to its right. Thus, one or the other of two
possible contacts, as shown in figure 1d, will occur, but
not both. To guarantee the stability of an assembly
including a convex-convex contact, it must be stable
when either one of these contacts, but not the other,
is included in the contact set.

In the round-vertex model, we assume that each
vertex is actually rounded, so the contact will actually
be between two circular arcs. In this case there will
be a single well-defined contact normal as shown in
figure le.

The sharp-vertex model is superior in that it is the
most conservative possible model. Any assembly sta-
ble under the sharp-vertex model will be stable under
the round-vertex model. However, the either-or con-
tacts that arise in the sharp-vertex model give rise
to either-or constraints in the linear program. Such
programs can be solved with mixed-integer program-
ming techniques, but solving these is much slower than
solving pure linear programs. For simplicity, we will
assume the round-vertex model in the remainder of
the paper.

3 Stability Testing

This section will describe the stability test algo-
rithm. We are given a complete list of the contacts
between a set of parts and a support structure, as
well as the masses and centroids of the parts. Fig-
ure 2a shows an example of an input assembly, with
contacts and centers of gravity marked. We will deter-
mine if the parts will accelerate if they begin at rest
and there is no friction. Two alternative formulations
of the test will be given.

N
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Figure 2: Picture of an example with three movable
parts and one unmovable part(shaded). (a) Contacts
among the parts. (b) Fall-down velocity found by the
system applied for a short time interval.

3.1 Velocity Formulation

An assembly is stable (to first order) if all infinites-
imal motions of the system consistent with the kine-
matic constraints strictly increase the potential energy
of the system[14]. If a motion exists for which the
potential energy decreases, then the assembly is un-
stable. Thus the stability of a given assembly can be
assessed by determining whether the assembly’s con-
figuration defines a local minimum of its potential en-
ergy constrained by the fact that the parts may not
overlap.

The stability tests developed below are derived by
linearizing the constraint equations imposed on the
assembly by the contacts. Therefore, they are able to
assess an assembly’s stability to first order. Since a
first order stability test can be formulated as a linear
program, stability can be determined efficiently by the
simplex algorithm.

In some special situations, a first order analysis
finds that no infinitesimal motion decreases the po-
tential energy, but some motion leaves it unchanged.
When such a situation occurs, the stability tests pre-
sented below cannot resolve the stability question, but
they do provide an indication that second or higher or-
der information is needed. A method for determining
stability or instability using second-order information
is presented in[15].

Following the approach used in [14], let q be the
generalized velocity vector of the bodies in the assem-
bly. In two-dimensional assemblies, this is defined as:

(‘l = [“izlaylaglai;%y%g?a e 'ainbaynbaanb]T
where z;, y; and 6; are the linear and angular veloc-
ities of the origin of the coordinate frame B; of the
i*h part, and n; is the number of movable parts. The
instantaneous change in potential energy and the in-
stantaneous kinematic constraints can be written as
functions of the generalized velocity to yield our sta-
bility test in the following form:

Minimize: V(q) (1)
Subject to: Non-Penetration Constraints(q) (2)



where V is the time rate of change of the assembly’s
potential energy.

The linearized non-penetration constraint for each
contact point is an inequality in the generalized ve-
locity, so all the constraints on the motions of the n;
parts arising from the set of n, distinct contacts can
be written as:

Wiq>0 (3)

where W is the n, by 3n; wrench matrix. Specif-
ically, for each part i € P(k) involved in a contact
1 < k < n., there will be three adjacent terms in W7
which are defined below:

WLk, 31 = (fgi)e (4)
Wik 3i+1] = (i), (5)
Wik, 3i+2] = rp; @i, (6)

Here (fig;), and (iig;)y are the z- and y-components
of fig ; and rp ; @ Nig ; is (r,:)o(Dr i)y — (Tr i)y (g 4)e,
the out-of-plane component of the cross product. All
other elements of the W,, are zero. Note that the row
of W, corresponding to the k' contact will have a
triplet of these values for each of the movable parts
involved in that contact. In equation (3), these three

elements will multiply 2, yr and 8y respectively, giv-
ing rise to an expression for the separation velocity of
the contact. As shown in equation (3), this must be
non-negative for non-penetration to be satisfied.

The rate of gain of potential energy of the assembly
can be written as —gZ .4, where g..; is referred to as
the gravitational wrench or generalized force. Choos-
ing the coordinate frames such that the origin of B;
coincides with the center of mass of the i*P body and
the y-axis is vertical (i.e., directly opposite to the di-
rection of the gravitational field), ger: takes on the
following simple form:

] T
(7)
where geTm,z’ = [0 — m;g 0] is the gravitational wrench

acting on part ¢, m; is the mass of part ¢, and g is the
acceleration due to gravity.

g?;xt = [ gzxt,l | gz:ct,2 | | gth,nb

Substituting the expressions for the kinematic con-
straints and the rate of gain of potential energy into
the optimization problem (1,2) yields a linear program
in the unknown generalized velocity q of the assem-
bly. We refer to this linear program as the velocity
formulation:

Minimize: —gZl,q (8)
Subject to: WIg>0 . 9)

When the velocity formulation has a unique solution
(as do most linear programs), the velocity of the as-
sembly will be zero, indicating stability.

When the velocity formulation is unbounded, the
assembly is unstable. The kinematic constraints rep-
resent a polyhedral convex cone with its apex at the

origin of the space of generalized velocities. Therefore,
if a velocity of the assembly exists for which the objec-
tive function is negative, then that same velocity mul-
tiplied by a scalar satisfies the kinematic constraints
and reduces the potential energy of the assembly also.
Letting the scale factor go to infinity, we see that this
linear program will be unbounded. However if the ve-
locity formulation is be modified by placing arbitrary
bounds on the magnitudes of the velocities (especially
those in the downward direction), then a possible fall-
down motion will be found by the linear programming
algorithm (as shown, for example, in figure 2b). This
will not typically be the actual fall-down motion, how-
ever. A more elaborate formulation based on the dy-
namic equations of motion[11] would be required if the
intent were to simulate the motions of the parts as the
assembly collapses.

3.2 Force Formulation

The dual linear program is referred to as the force
formulation and is given as follows:

Maximize: 0 (10)
Subject to: W, e = —geuy (11)
c>0 (12)

where the unknown, c, is the vector of force magni-
tudes. Specifically, the k*? element of ¢ is the magni-
tude of the force at the contact point k.

Notice that the objective function of the force for-
mulation is independent of the contact force magni-
tudes. This implies that the requirement for stability
is that a c exist which satisfies the constraints (11)
and (12). The former constraint is the set of equilib-
rium equations and the latter requires that the con-
tacts be compressive. Thus, a frictionless assembly is
stable only if equilibrium can be satisfied with com-
pressive contact forces. If at least 3n; elements of ¢,
are strictly positive, then the assembly is stable. Oth-
erwise, as before, second order effects must be consid-
ered.

Since the two formulations of the stability problem
are dual, either one maybe used to determine insta-
bility. When the assembly is stable, the solution of
the velocity formulation, q, is identically zero and its
the lagrange multipliers are one possible set of contact
force magnitudes that stabilize the assembly. Solving
the force formulation yields the same set of contact
force magnitudes and its lagrange multipliers are the
velocities which are all zero. When the assembly is
unstable, the force formulation will be infeasible and
the velocity formulation will be unbounded, so neither
will give any information beyond the fact of instability.

4 Fixture Synthesis

Given an unstable assembly, we wish to find a small
set of fixels that can be placed on the open edges of the
parts to stablize the assembly. An open edge is any
portion of the surface of any part that is not already
in contact with another part.



One sure method of fixturing an assembly would
be to cover every open edge of the assembly with con-
tacts. This would be the equivalent of embedding the
assembly in a block of concrete. This strategy would
obviously stablize any assembly, but we would prefer
to find a smaller set of contacts. To find this set, we
take a four stage approach:

1. Add a finite number of fixels to each open edge
of the assembly.

2. Construct a linear program using the force-
formulation to incorporate the fixels.

3. Solve the linear program, minimizing the sum of
the contact forces at the fixels. This will normally
give many fixels with zero contact force.

4. Discard all fixels which have zero contact forces.
The remaining fixels constitute a fixture design.

This approach suggests a modification of the force for-
mulation presented in the previous section.

As we have observed before, any contact force dis-
tribution along a frictionless edge can replaced by a
pair of frictionless point contacts at the endpoints of
the contact region. Thus it will suffice in all cases to
add just two fixels to each open edge. So 2n. fixels
will be added to an assembly with n, open edges. The
positions of these added contacts will be parameter-
ized, so that the solution procedure can move them to
any point along their respective edges. These added
contacts will be labeled from one to 2n., while the n,
known contacts are labeled from 2n. + 1 to 2n, + n..
We will use the variable ¢, 1 < k < 2n. + n., to
represent the forces at contact &, and the variable s;,
1 <k < 2n,, to represent the positions of added con-
tact k.

Let i be the part on which the £*" added fixel is to
be placed, and let p;; and og; be the endpoints of
the open edge of 7 that it is to be placed on (expressed
in part i’s frame of reference, B;). The variable s
will range from zero to one, and will parameterize this
fixel’s position. If sy, is zero, then the k" fixel will
be at the endpoint p; ;. If it is one, it will be at o; 3.

Thus, in general, the k*! fixel location on part i will

be:
Tri = Pkt €kiSk (13)

where e}, ; = 03 ; —Pr,;. The normal for fixel k£ on part
1, iy ;, will be the inward-pointing normal of the edge.
Note that fi; ; does not vary with the fixel location.

The equilibrium constraint for moments on part ¢
will include terms for each added fixel & on part ¢ of
the form (rp; @ fig ;) cgx. Since ry; is a function of
the variable s, this gives a non-linear term in the
constraint, since it contains the product sici of two
variables. However, if a dummy variable d; = sgci is
substituted in, all these terms become linear and take
the form:

(Pr,i) @Tig ;e + (er,;) @ T ; dy (14)

Combining these constraints with an objective
function which sums the magnitudes of the fixel con-
tact forces yields the following linear program:

Minimize: bTx (15)
Subject to: Ax = —geqt (16)
Bx >0 (17)
x >0 (18)
where:

X [Cl - Cann. d1 .. .dzne]T (19)
B = [I2ne |02ne><nc | - I2ne] (20)
b = [1...10...0]F (21)

o N~

2ne Ne+2ne

where I,, is the identity matrix of size n and Opxm 18
an n X m array of zeros. The matrix A is the 3n; by
4n, + n. wrench matrix where for each fixel 1 < k <
2n. on part ¢ we have

W, [3i,k] = (Bg)e (22)

W, [3i+1,k] = (frs), (23)
W,[3i+2,k] = pri@ig; (24)
W,[3i+2,k+2n.+n.] = ep; @i, (25)

And for each part i € P(7) involved in contact k, 2n, <
k < 2n¢ + n., we have

W, [Bi+ 1, k] = (i)
Wn[3l—|—2,]{7] = I'k,i@flkyi

If this linear program is infeasible, then it is impossi-
ble to stablize the assembly with contacts on the given
set of open edges. This would never occur unless some
of the open edges have been eliminated from consid-
eration.

If the linear program has a solution then the assem-
bly can be stabilized. We eliminate all added contacts
for which the contact force ¢; is zero. For the re-
mainder, we can find the location of the contact on
the edge by computing s = di/cg. Since the simplex
algorithm will usually produce many zeros, this usu-
ally gives a small set of contacts with minimum total
contact force that will stablize the assembly.

5 Discussion

A C language implementation of the fixture gener-
ation procedure and both formulations of the stabil-
ity test have been completed. The results presented
here are based on implementations running on an IBM
RS6000 using IMSL routines to solve the linear pro-
grams.

Figure 2 shows an example of the stability test. The
two triangular bodies are assumed to have mass m and
the gravitational field points directly down the page.



() (d)

Figure 3: Fixel positions generated for four unstable
assemblies. Shaded parts are unmovable and gravity
is straight down.

It turns out that this assembly is stable if and only if
the mass of the third body (the cap) is greater than or
equal to 2.594m. Figure 2b shows the fall-down mo-
tion found by solving the velocity formulation. Note
that the cap is actually rising slightly while the tri-
angles are descending. This result is very sensitive to
the geometry. If the size of the cap is reduced by 25%,
it must be 10 times as heavy as before to stablize the
assembly, because its upward velocity is much smaller.

Figure 3 shows four examples of fixel positions on
originally unstable assemblies. It should be noted
that, because of our particular choice of objective func-
tion, the optimal solutions are non-unique in most
cases, and thus the solution found may vary. In fig-
ure 3a a single free part is fixtured with two fixels
on the bottom and one on the side. Since simplex al-
ways searches along the constraint surfaces, fixels tend
to be placed at the extreme endpoints of the regions
in which they could be placed. In figure 3b placing
the fixel at either endpoint of the available lower edge
would not stabilize the assembly. Instead, stability
can be obtained if the fixel is placed anywhere in a
particular region of that edge. The solution shown
places the fixel at the lower limit of that feasible re-
gion. With this fixel position, the square is in unstable
equilibrium. Any disturbance would cause the square
to roll over the fixel point. We will discuss a remedy
for this difficulty later. Figure 3¢ shows an assembly
with two parts. If the square is made heavier, the as-
sembly becomes stable, and no fixture point is added.
Figure 3d shows a more complex assembly. The bot-
tom three movable parts are instantaneously stable
due to the weight of the parts above, but the others
would fall down if not fixtured. The algorithm places
four fixels, although two would suffice. We do not,

in general get the minimum number of fixels with the
current algorithm.

The run time of the algorithm is strongly domi-
nated by the time to solve the linear program. The
time to find the contacts and set up the matrices of co-
efficients typically accounted for less than one twenty-
fifth of the total run time. Simplex algorithms typi-
cally run in time roughly proportional to the cube of
the number of constraints[9], however the complexity
of some of the linear programming routines tested ap-
peared to be nearer to the fourth power of the num-
ber of constraints. Since the number of constraints
is linear in the complexity of the assembly (there are
3np + 2n. constraints in two dimensions), it appears
that our method typically runs in roughly ©(N3) or

O(N*) time where N is the size of the input. For ex-
ample, two-dimensional assemblies with 10 to 15 parts
typically had about 200 constraints and took 45 to 60
seconds of CPU time to solve.

The basic methods described here can be extended
considerably. Extensions to three-dimensions have
been done. Placing parameterized fixels on faces of
three-dimensional polyhedra is a bit more complex,
since two position parameters are needed for each fixel,
and a more complex set of constraints are needed to
constrain the fixels to the faces. However, if non-
convex faces are decomposed into sets of convex faces,
and dummy variable substitutions similar to the one
in the two-dimensional case are used, then a set of
linear equations can be produced.

Figure 4 shows a three-dimensional assembly con-
sisting of a three-legged table and two boxes, one lean-
ing against the other. The full description of this as-
sembly leads to a linear program with 134 constraints
(18 equilibrium constraints, 116 constraints keeping
fixels on faces) in 274 unknowns (13 inter-part con-
tact forces, 87 fixel contact forces, 174 fixel positions).
The fixture shown in Figure 4 was designed for this
assembly in 9.4 cpu seconds. Fixel 1, on the table top,
is somewhat surprising. One might have expected it
to stablize the table by replacing the missing leg with
the alternate fixel 1 shown in grey. However since the
foot print of the table legs is finite, the fixel on the
tabletop actually has a slightly longer moment arm,
so it requires slightly less force to stabilize the table
this way. However, if the user prohibits fixels on the
tabletop, then the fixel will be placed in the alternate
position instead.

The primary difficulty with curved surfaces is that
contacts between them often can not be precisely rep-
resented by a finite set of point contacts. For exam-
ple, a cylinder standing upright on a plane has a cir-
cular contact which would have to be approximated
by a polygon with a finite number of vertices. Hav-
ing done this, the stability test can be extended in a
straight-forward manner to handling curved surfaces,
however placing fixels with parameterized positions on
curved surfaces generally produces a nonlinear system
of equations. One way to handle such surfaces is to
use a sampling approach to selecting possible fixel po-
sitions instead of allowing them to move anywhere on
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Figure 4: A three-dimensional assembly consisting of
a three-legged table and two boxes standing on an
unmovable floor (not shown). Contacts 1, 2 and 3
are found to stablize it. If contacts on the tabletop
are excluded the alternate contact is used instead of
contact 1.

the surface. We add contacts at a large number of
fixed points scattered uniformly over the surface, solve
the equations, and place fixels at all of the points
where the forces were non-zero. This does not give
the same assurance that we can stabilize any assem-
bly as the parameterized fixel method does, but it is
adequate for many assemblies.

In some cases it might be desirable to reformulate
the problem to generate the minimum number of fix-
els. The objective would be to minimize the number of
added contacts with non-zero forces. A problem with
such an objective function can be solved by standard
mixed-integer programming techniques.

As described above, the fixel selection algorithm
tends to produce marginally stable fixturings that are
easily upset. One method that has been developed
to avoid such problems is to solve a series of linear
programs, each with different disturbing forces added
onto the gravitational forces. After each run all pa-
rameterized fixels with non-zero contact forces are
added into the fixture design and taken as given for
all future runs. This will lead to a fixture that will
be stable for all the external forces tested, and for all
positive linear combinations of those forces. Though
the number of fixels placed by this method may not
be minimal, tests have given good results[16].

In conclusion, we have described a basic technique
for generating fixture points that is both efficient
enough to be quite practical and readily extensible to
a wide range of related problems. While our technique
has several drawbacks, they can easily be remedied.
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