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' of a dexterous manipulation sys- 
tem can be used for  predicting the feasibility of a 
manipulation plan generated under the quasistatic 
assumption but executed under dynamic conditions. 
Contact forces between the object and manipulator are 
calculated to  determine whether contacts can be main- 
tained for  the planned motion. Compressive contact 
forces indicate that contacts can be maintained fo r  the 
specified manipulation plan and this implies that ac- 
tual dynamic manipulation succeeds. Results of the so- 
lution of dynamic equations are given fo r  selected ob- 
jects and video images of successful plans are shown. 

1 Introduction 
Dexterous manipulation involves the set of motions 

required to  grasp an object in a robot hand and change 
its position and orientation through a series of coordi- 
nated motions. It is related to  robot motion planning 
in the sense of planning the trajectories of the manipu- 
lator joints and object position and orientation. Dex- 
terous manipulation differs from other types of robotic 
manipulation in that the object being grasped can also 
be repositioned and reoriented within the end-effector 
while the end-effector itself is undergoing translation 
and rotation. 

Most research has focused on the kinematics and 
dynamics of fingertip-only dexterous manipulation 
[2, 5, 12, 11. As for whole-arm manipulation (which 
aims to  use all surfaces of the hand ) the quasistatic as- 
sumption has often been applied. Early work by Trin- 
kle [7, 91 described lifting a polygon using an envelop- 
ing grasp with sliding contacts. Later work by Trinkle 
and Hunter [SI investigated the search for a manipu- 
lation plan of a frictionless polygon acted upon by a 
palm and two fingers. The quasistatic assumption was 
maintained and contacts were allowed between finger 
edges and tips with object. 

This paper describes whole-arm manipulation that 
takes into account the dynamics of the hand and ob- 
ject during manipulation. In particular, it will show 
that it is possible to  predict whether a quasistatic ma- 
nipulation plan will succeed when executed dynami- 

cally. 

2 Dynamics of whole-arm manipula- 

We will study the motion of a manipulator consist- 
ing of two single-link fingers in contact with a polyg- 
onal object. Each link has a revolute joint. Fig. 1 
shows the manipulator and its associated parameters. 

t ion 

_ _  

U U 
Figure 1: Dexterous manipulator configuration 

The dynamic equation at joint i (i = {1,2}) re- 
lating the actuator torque to  the joint acceleration, 
velocity, and position is 

where c, is the vector of normal wrench intensities, 
and ct is the vector of tangential wrench intensities. 
J i ,  ri, Bi, e t ,  ei ,  are referred to  the output side of 
the respective actuators. Ji is the combined moment 
of inertia at joint i due to the dc motor, harmonic 
drive gearing, flexible coupling, and the link. ri is the 
torque generated at joint i, Bi is the viscous friction 
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coefficient, Da is the dry friction coefficient. jin is the 
Jacobian vector of the i-th joint. 

The dynamic equation of the object being manipu- 
lated is 

M is the diagonal 3x3 mass and moment of inertia 
matrix. 6 is a three-dimensional vector giving the ob- 
ject’s acceleration. gobj is the external wrench, and in 
our case consists only of the gravitational wrench due 
to the object’s weight. wn and wt are the normal 
and tangential wrench matrices respectively defined in 
[ll]. For planar manipulation, wn and wt have 3 
rows and their numbers of columns are equal to the 
number of contacts. cn and ct are the vectors of nor- 
mal and tangential wrench intensities respectively and 
the number of elements in each is equal to the num- 
ber of contacts. When the contacts are all sliding, the 
tangential wrench intensity can be expressed in terms 
of the normal wrench intensity as: 

c,=-UEC, , (3) 

where E and U are as defined in [ll]. U is a ma- 
trix whose diagonal elements are the coefficients of 
friction between the object and the manipulator and 
all off-diagonal elements are zero. E is also a diagonal 
matrix; the diagonal elements are either +l or -1 and 
indicate the direction of sliding. 

Our goal is to solve the dynamic equations un- 
der the initial condition that we have 4 sliding con- 
tacts. Assuming that all bodies are rigid, the kine- 
matic constraint for bodies moving with sliding con- 
tacts t o  maintain contact is expressed as the following 
equation: 

3;, is the normal Jacobian matrix that maps the joint 
velocities to the normal component of velocities at  the 
contact points. Each row of the left-hand side is the 
normal component of the velocity of a contact point 
on the object being manipulated and the right-hand 
side is the velocity of the contact point on the link. 
This equation says that two moving objects can only 
maintain contact if they have the same velocity in the 
contact normal direction. 

Let us consider the case of 4 sliding contacts. In 
this case, wn is a 3x4 matrix. The Jacobian matrix, 
Zn, is 4x2 corresponding to 4 contacts and 2 joints. 
Both of these quantities are defined in [ll). When the 
Jacobian matrix is partitioned into 2 columns, we can 
write gn as: 

2.1 Velocities and accelerations derived 

For velocities, we specify 8, and solve for 4 and 82. 

from the kinematic constraint 

To do this, we partition the matrix 

[ w;f -L7n I 
into 

[ W: - j2n I - A n  3 * 

Following the notation in [ll], let us make the follow- 
ing definitions: 

PA1 [ w;f -j2n 3 and PA,, = -31nY (6) 

where PA, is nonsingular. If PA, cannot be defined SO 
that it is nonsingular, then the rest of the derivations 
would have to make use of the pseudoinverse of PA, 
rather than the inverse. We can then write: 

A *  

[ P A ,  P A , ,  ] = 0 3 (7) 
[e:] 

where 0 is the zero vector of length 5. This leads us 
to: 

thereby allowing us to obtain 4 and 8, through the 
inversion of PA, as follows: 

(9) 

Note that  PA^ and PA,, are dependent on 0 and 
q. Since we are dealing with a 5 degree of freedom 
system and we have 4 sliding contacts, there is 1 de- 
gree of freedom remaining and we can specify its de- 
sired value. Specifying the desired value of 81, we can 
obtain numerical values for 82  and q and hence the 
elements of the matrix PA,. This is done by solv- 
ing a set of simultaneous nonlinear equations, each of 
which is a C-function equated to zero. C-function!, 
which are widely used in robot motion planning [4, 
describe the position and orientation of a robot r e -  
ative to an object or obstacle. A similar reasoning 
applies to PA,,. Equation (9) allows us to obtain 4 
and 4, once we know the configuration parameters 81, 
8 2 ,  q, and joint 1 velocity 41 .  By differentiating equa- 
tion (9) with respect to time, we obtain the accelera- 
tions of the object and joint 2 in terms of the velocity 
and acceleration of joint 1. 

The above analysis deals with sliding contacts only. 
The same analysis can be done if rolling contacts are 
present (but which are not considered in this paper). 
The number of contact constraints will then be 2 R + S  
where R is the number of rolling contacts and S is the 
number of sliding contacts. This also determines the 
dimension of the PA, matrix. Detailed consideration 
of this analysis can be found in [Ill. 
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2.2 Derivation of the differential equation 
of motion 

At this time, recall equation (2) and the dynamic 
equation for finger 2 as given by equation (1) which 
we shall rewrite as follows: 

Mi -g,bj - Wncn - W ~ Q  = O , (10) 

~ l i i z + ~ z e z + ~ a s g n ( e 2 ) + j ~ ~ ~ n + j ~ t ~  = 72 . (11) 
Equation (10) gives the dynamics for the object and 
equation (11) gives the dynamics for finger 2. Ct can 
be expressed in terms of Cn by using equation (3). 
Thus, 

Wn~n + Wtq = [ Wn - W~UZ] Cn , (12) 

Let 

The complete dynamic equations of the system can 
therefore be obtained by substituting for q ,  82 and 
9 2 .  The differential equation can be expressed as: 

QiJ1 + @,e1 + !P3 = 0 , (16) 

where G1, @,, and Qi3 are coefficients dependent on the 
configuration parameters and their first time deriva- 
tives. The solution to  this differential equation is the 
time trajectory of 81. To guarantee that the 4 contacts 
are maintained, we must check that Cn > 0. 

Given the initial value of 81, we can solve the set 
of four nonlinear C-functions to  obtain the values of 
0 2  and Q. With these values, we can form the normal 
wrench and Jacobian matrices. As time progresses, 
the value of 81 changes and hence the values of 82 and 
q. @ l ,  Qi,, and Qi3 are updated every time interval of 
the differential equation solver. 

At each time step, we solve equation (16) to obtain 
the values of 81, e, ,  and 81. From these, the values for 
joint 2 can also be obtained from the kinematic con- 
straints. The normal component of each contact force 
cin is then computed and the sign indicates whether 
the i-th contact force is compressive or tensile. If cin 
is positive, then we know that for the particular time 
step, contact is maintained between an object feature 
and a link feature. If a set of contacts (known as 
contact formation) is maintained, then we know that 
motion is possible for that contact formation. 

The dynamics code is implemented in the C lan- 
guage and runs on an IBM RS/6000 workstation. 
Function calls are made to  the IMSL library to  nu- 
merically solve systems of nonlinear equations, per- 
form matrix computations, and numerically solve the 
differential equation. 

3 Experimental procedure and results 
We will select some manipulation plans for the poly- 

gons and investigate their dynamics and contact forces 
given torque trajectories for the joints. If the plans 
turn out to  be feasible in simulation, we will execute 
them using the dexterous manipulator and verify that 
this is indeed so. 

For our experiments, we have chosen to  use an ir- 
regular heptagon and a hexagon. All the plans involve 
large scale reorientation of the objects. More specifi- 
cally, they consist of sliding the object to  the left and 
then trying to  flip it rightwards over a vertex that is 
touching the palm. The sequence of finger and object 
motions for the irregular heptagon is the same as the 
quasistatic plan described in [lo]. This is shown in 
Fig. 2. We are especially interested in showing that 
this plan works also in a dynamic environment given 
the torque trajectories that we applied. If this plan 
can be executed both in dynamic simulation and on 
the prototype dexterous manipulation system that we 
have in the laboratory, then we would have established 
the validity of the dynamic model being used. 

3.1 Manipulation strategy 
To manipulate the objects, our strategy is to apply 

a sequence of coordinated torques to  the joints. We 
start off by choosing torque values for both joints, and 
use them in solving the dynamic equations. Contact 
forces are then calculated. If the contact forces turn 
out to be compressive, then we know that the object 
can maintain the set of contacts during motion. The 
object goes through several different contact forma- 
tions during the course of manipulation. Therefore, 
we continue this process for different contact forma- 
tions until the object gets into its final configuration. 
If the contact forces stay compressive all this time, 
then we have a feasible manipulation plan. 

The method of finding the torque trajectories is em- 
pirical and relies on systematically increasing or de- 
creasing the torque until the desired object motion 
is achieved and no contacts break. Given the torque 
values, the dynamic equations are used for simulating 
the motion and the contact force equation is used for 
checking the values of contact forces. The type of ob- 
ject motion encountered during manipulation consists 
only of sliding. To achieve sliding motion to the left, 
an anti-clockwise torque is applied to  finger 1 (right 
finger). From [lo], we have a good idea of the amount 
of torque required to  bring about this motion. If ap- 
plying this torque does not make the object slide to  
the left, the torque is increased by 10%. This process 
is continued until the object begins to  slide. There- 
after, the torque is increased to  make the object slide 
faster. When it is observed that the object edge is not 
in contact with the palm, the torque is decreased by 
10% and the resulting torque is recorded as part of the 
trajectory. To make the object slide to  the right, the 
reasoning is similar except that the torque is applied 
to finger 2. To make the object flip over to  the right 
we apply a step jump in the torque of finger 2. 
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Frame A Frame B control the fingers during manipulation, and using a 
higher speed data acquisition board to read more sen- 
sors faster. 
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Figure 2: Irregular heptagon manipulation plan 

Using the above guidelines, we were able to obtain 
torque trajectories for joints 1 and 2 ( Fig. 6 ) to 
manipulate the irregular heptagon with compressive 
contact forces. The results from dynamic simulation 
thus show that a quasistatic plan [lo] corresponding to 
Fig. 2 can also work in a dynamic environment. With 
only slight modifications to the quasistatic torque tra- 
jectories for the irregular heptagon, we were able to 
obtain torque trajectories for the hexagon. This gives 
rise to the plan shown in Fig. 3. 

Using the torque trajectories obtained in the pre- 
vious section, we set out to see if we could actually 
obtain the desired manipulations. It turned out that 
we succeeded in manipulating the irregular heptagon 
and the hexagon as predicted. Figs. 4 and 5 show im- 
ages of some of the frames taken from video recordings 
of the objects in motion. They show that the results 
agree with those predicted by the dynamic simulation. 

4 Conclusion and Future Research 
We have derived the dynamic equations for a pro- 

totype dexterous manipulation system. A dynamic 
simulator was developed to predict whether contacts 
could be mainatined under a specified motion plan. 

Given candidate manipulation plans, we calculated 
the contact forces between manipulator and workpiece 
and selected those that were compressive. These plans 
were then executed on the dexterous manipulator and 
the plans succeeded for the irregular heptagon and 
the hexagon. We conclude that it is possible to pre- 
dict the outcome of a quasistatic manipulation plan 
in a dynamic environment given the dynamic model 
of the system and torque trajectories. Possibilities for 
future work include incorporating tactile sensors on 
the finger surfaces, using a sensed-torque technique to 
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Frame A Frame B 

Frame C Frame D 

Frame F Frame E 

Figure 3: Hexagon manipulation plan 

Figure 5 :  Video frames of hexagon manipulation se- 
quence 

torque (oz-in) 

(a): joint 1 ttxque profile I 
(b): joint 2 torque profile 

2~1--1--- 
0 . . .... ... ... . . .. . .... . .... .. . .. ........ ... ..... .. ... ... ........ .. ........ 

l-----u 
I I 2 3 4 5 6 7 tinie(secs) 

Figure 6: Torque trajectories for irregular heptagon 
Figure 4: Video frames of irregular heptagon manip- 
ulation sequence 
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