Query Chains: Learning to Rank from Implicit Feedback

Filip Radlinski, Thorsten Joachims
KDD’05

CSE 450 Web Mining Seminar
Jian Wang
Roadmap

- **Analysis of User Behavior**
- Analysis of Implicit Feedback
- Learning Ranking Functions
- Conclusion and Future Work

- Reference: Accurately Interpreting Clickthrough Data as Implicit Feedback, Thorsten Joachims, Laura Granka, BingPan, Helene Hemebrooke & Geri Gay, SIGIR’05
Analysis of User Behavior

- Which links do users view and click

Figure 1: Percentage of times an abstract was viewed/clicked depending on the rank of the result.
Analysis of User Behavior (contd)

- Do users scan links from top to bottom

Figure 2: Mean time of arrival (in number of previous fixations) depending on the rank of the result.
Analysis of User Behavior (contd)

- Which links do users evaluate before clicking

Table 2: Percentage of times the user viewed an abstract at a particular rank before he clicked on a link at a particular rank.

<table>
<thead>
<tr>
<th>Viewed Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.6%</td>
<td>76.2%</td>
<td>73.9%</td>
<td>60.0%</td>
<td>54.5%</td>
<td>45.5%</td>
</tr>
<tr>
<td>2</td>
<td>56.8%</td>
<td>90.5%</td>
<td>82.6%</td>
<td>53.3%</td>
<td>63.6%</td>
<td>54.5%</td>
</tr>
<tr>
<td>3</td>
<td>30.2%</td>
<td>47.6%</td>
<td>95.7%</td>
<td>80.0%</td>
<td>81.8%</td>
<td>45.5%</td>
</tr>
<tr>
<td>4</td>
<td>17.3%</td>
<td>19.0%</td>
<td>47.8%</td>
<td>93.3%</td>
<td>63.6%</td>
<td>45.5%</td>
</tr>
<tr>
<td>5</td>
<td>8.6%</td>
<td>14.3%</td>
<td>21.7%</td>
<td>53.3%</td>
<td>100.0%</td>
<td>72.7%</td>
</tr>
<tr>
<td>6</td>
<td>4.3%</td>
<td>4.8%</td>
<td>8.7%</td>
<td>33.3%</td>
<td>18.2%</td>
<td>81.8%</td>
</tr>
</tbody>
</table>

Figure 3: Mean number of abstracts viewed above and below a clicked link depending on its rank.
Roadmap

- Analysis of User Behavior
- Analysis of Implicit Feedback
- Learning Ranking Functions
- Conclusion and Future Work

Reference: Accurately Interpreting Clickthrough Data as Implicit Feedback, Thorsten Joachims, Laura Granka, BingPan, Helene Hemebrooke & Geri Gay, SIGIR’05
Analysis of Implicit Feedback

- Does relevance influence user decisions

- Are clicks absolute relevance judgments
 - Trust bias
 - Quality bias
Analysis of Implicit Feedback (contd)

<table>
<thead>
<tr>
<th>Click (q) Skip Above</th>
<th>Click (q) No-Click Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)[q]</td>
<td>(q)[q]</td>
</tr>
<tr>
<td>(x)([x]q)</td>
<td>(x)([x]q)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Click (q') Skip Above</th>
<th>Click (q') No-Click Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q')([q']q)</td>
<td>(q')([q']q)</td>
</tr>
<tr>
<td>(x)([x]q')</td>
<td>(x)([x]q')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Click (q') Skip Earlier Query</th>
<th>Click (q') Top Two Earlier Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q')([q']q) (x)([x]q')</td>
<td>(q')([q']q) (x)([x]q')</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{q_1}{d_1} & \quad \frac{q_2}{d_4 \times} \\
\frac{d_2 > q_1}{d_1} & \quad \frac{d_4 > q_2}{d_5} \\
\frac{d_3}{d_6} & \quad \frac{d_4 > q_1 d_1}{d_4 > q_1 d_3}
\end{align*}
\]
Analysis of Implicit Feedback (contd)

- How accurately do clicks correspond to explicit judgment of a document?

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click (>q) Skip Above</td>
<td>78.2 ± 5.6</td>
</tr>
<tr>
<td>Click First (>q) No-Click Second</td>
<td>63.4 ± 16.5</td>
</tr>
<tr>
<td>Click (>q) Skip Earlier Query</td>
<td>68.0 ± 8.4</td>
</tr>
<tr>
<td>Click (>q) Top Two Earlier Query</td>
<td>84.5 ± 6.1</td>
</tr>
<tr>
<td>Inter-Judge Agreement</td>
<td>86.4</td>
</tr>
</tbody>
</table>

Table 1: Accuracy of the strategies for generating pairwise preferences from clicks. The base of comparison are the explicit page judgments. Note that the first two cases cover two preferences strategies each.
Roadmap

- Analysis of User Behavior
- Analysis of Implicit Feedback
- Learning Ranking Functions
- Conclusion and Future Work

Reference: Optimizing Search Engines using Clickthrough Data, Thorsten Joachims, SIGKDD’02
• Evaluation Environment
 • Nutch search engine as a starting point
 • Osmot search engine effectively being a wrapper around Nutch

• Detecting query chains
 • Train a number of SVM classifiers with various parameters, with accuracy of 94.3% and precision of 96.5%
 • A simple non-learning strategy, with accuracy and precision of 91.6%
Learning Ranking Functions

\[d_i >_q d_j \]
\[\text{rel}(d_i, q) = w \cdot \Phi(d_i, q) \]

- Ranking SVMs

\[w \cdot \Phi(d_i, q) \geq w \cdot \Phi(d_j, q) + 1 - \xi_{ij} \]
\[\min_{w, \xi_{ij}} \frac{1}{2} w \cdot w + C \sum_{ij} \xi_{ij} \]
\[\text{subject to} \quad \forall (q, i, j) : w \cdot \Phi(d_i, q) \geq w \cdot \Phi(d_j, q) + 1 - \xi_{ij} \]
\[\forall i, j : \xi_{ij} \geq 0 \]

- Retrieval Function Model

\[\Phi(d, q) = \begin{bmatrix} \phi_{r_{\text{rank}}}^f (d, q) \\ \vdots \\ \phi_{r_{\text{rank}}}^f (d, q) \\ \phi_{\text{terms}} (d, q) \end{bmatrix}, \quad \phi_{r_{\text{rank}}}^f (d, q) = \begin{bmatrix} 1(\text{Rank}(d \text{ in } r^f_0 (d, q)) \leq 1) \\ \vdots \\ 1(\text{Rank}(d \text{ in } r^f_0 (q)) \leq 10) \\ 1(\text{Rank}(d \text{ in } r^f_0 (q)) \leq 15) \\ \vdots \\ 1(\text{Rank}(d \text{ in } r^f_0 (q)) < 100) \end{bmatrix} \]
\[\phi_{\text{terms}} (d, q) = \begin{bmatrix} 1(d = d_1 \land t_1 \in q) \\ \vdots \\ 1(d = d_M \land t_N \in q) \end{bmatrix} \]
Learning Ranking Functions (contd)

- Adding Prior Knowledge

\[\forall i \in [1, 28|F|]. \ w^i \geq w_{\text{min}} \]

- Results and Discussion

<table>
<thead>
<tr>
<th>Evaluation Mode</th>
<th>Chains</th>
<th>User Prefers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>(rel_{QC}) vs. (rel_0)</td>
<td>392 (32%)</td>
<td>239 (20%)</td>
</tr>
<tr>
<td>(rel_{QC}) vs. (rel_{NC})</td>
<td>211 (17%)</td>
<td>160 (13%)</td>
</tr>
</tbody>
</table>
Roadmap

- Analysis of User Behavior
- Analysis of Implicit Feedback
- Learning Ranking Functions
- Conclusion and Future Work
Conclusion and Future Work

• Query chains can be used to extract useful information from search engine

• Tolerance to noise in training data?
• Position of a query within a chain? Position of a click within all clicks?
• Learn personalized ranking functions?
• Alternative learning methods?