A High-performance In-memory Web Proxy Cache

Zhengxiang Pan

April 30, 2003
Road Map

- Background
- Design & Implementation
- Experiments
- Conclusion
The Simultaneous Proxy Evaluation (SPE) architecture

The SPE architecture (Courtesy [2])
Motivation

- Some objects are uncachable
 - cache settings in HTTP
 - CGIs
 - Forms & URLs contain “?”

- The difference of the response time of a cache hit and a cache miss for a same object

- Related works
 - Modified squid
Implementation

- Language: Java
- Platform: JVM 1.3.1.02 or later
- Request Header Rewriting
 - Connection: Keep-Alive \rightarrow Connection: Close
 - Request-URI: absoluteURI \rightarrow abs_path + Host
- Multi-thread
 - Socket reading and writing are blocking
 - Using java Thread mechanism
Implementation

- Identifying request
 - GET and HEAD:
 - URI
 - If-Modified-Since,
 - If-Unmodified-Since,
 - If-Match,
 - If-None-Match,
 - and If-Ranges
 - POST: plus content’s MD5 digest
Implementation

- Hash Table
 - Key.hashCode(): compute hash code for bytes
 - Key.equals(): if two byte arrays are identical

- Reproducing response time
 - Record time stamp as base point when receive a request
 - Miss: Wrap a chunk of data into an Packet object with the relative time stamp
 - Hit: Unwrap an Packet and send it at the recorded time

- Memory management:
 - Evict oldest object
Experiments

- Conducted in WUME lab (Thanks!)
- CAProxy V.S. Modified-Squid
- Httperf as client sending a list of URLs
- Two runs for each proxy
- Data set: 300 URLs from NLANR log
Results

- **Cacheability**
 - Modified-Squid: 6% uncacheable
 - CAProxy: Cache everything

- **Difference in response time of miss/hit pairs**

<table>
<thead>
<tr>
<th></th>
<th>CAPROXY</th>
<th>MODIFIED-SQUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>10.6</td>
<td>46.6</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>63</td>
<td>173.5</td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Percentage of zeros</td>
<td>95.70%</td>
<td>2.90%</td>
</tr>
</tbody>
</table>
Conclusion

- Can cache nearly all the HTTP responses regardless of their cacheability settings

- Significantly reduce the difference in response time of a cache miss and a cache hit of a same object
Reference

