TCP Timers

• Operations that involve the TCP timers:
 – Lost packet retransmission
 • client and server side
 – Repeating the slow-start phase
 • usually only client side
 – Reclaiming state after connection termination
 • usually only server side
Retransmission Timer

- TCP Connection Delay
 - 3-way handshake

- Web Transfer Delay
 - Mostly caused by congestion window size
Slow-start Restart

• How does this affect persistent connections?
• Ways to reduce the restart penalty
 – Disable timer
 – Make timeout longer
 – Dynamic congestion window
 – Pace transmission packets
TIME_WAIT State

- Why is this state needed?
- Effect on web servers
- Reducing overhead
 - Change TCP
 - Change HTTP
HTTP/TCP Layering

- Some issues that can apply to both the HTTP and the TCP layers:
 - Aborted HTTP Transfers
 - Nagle’s algorithm
 - Delayed Acknowledgements
Aborted HTTP Transfers

- HTTP has no support for aborts
- How does a user’s abort command impact web performance?

Details of TCP connection abort:
- FIN packet abort
- RST packet abort
Nagle’s Algorithm

- Made for older protocols
- Reduces amount of small packets
- Usability with persistent connections
- Why not just disable it?
Delayed Acknowledgements

- Why delay ACK packets?
- Interaction with HTTP traffic
Multiplexing TCP Connections

- What is good about using more than one connection for the web?
- Images with webpages
- Proxies
- Fooling the congestion window
- Problems with multiple connections?
- Fairness
- Server load
- Latency
Server Overheads

- System call overhead
 - Multiple system calls for single operations
 - Some can be combined:
 - GET requests
 - Send Header & Body with one call
 - Send Response and FIN with one call

- Limit simultaneous connections

- Close persistent connections
Any Questions?