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update of a small constant number of integer variables and thus allows 
a very simple implementation of the digital linearity criterion. 

All three algorithms take O(N) steps to decompose a digital 
curve into digital straight segments. The proposed algorithm uses 
only a constant O(1) storage and is the only one that has on-line 
characteristics and requires O(1) steps for each additional point. In 
these respects, it is advantageous compared _with the O’Rourke and 
Smeulders and Dorst algorithms, which use O(N) and O(logN) 
storage, respectively, and may  require up to O(N) and O(logN) 
steps for some points and cannot be used as on-line algorithms. 
The Smeulders and Dorst algorithm requires only additions and state 
changes to compute the representation and for checking the linearity 
condition, and thus, it is possible that it will turn out to be faster 
on some machines than the proposed algorithm, which sometimes 
requires integer multiplications. 

As shown previously, the problem of finding whether there is a 
line y  = mx  + b that is digitized into a given digital line is identical 
to the problem of finding whether there are two numbers m  and b 
satisfying Lmi + bj = yi, where { yz}zr is the given y coordinate 
of the digital curve. Substituting m  for o, b for 0, and y; for a,, it is 
clear that this problem is identical to the problem of finding whether 
a given sequence {ci}y=r is a nonhomogeneous spectrum. Hence, 
we also have a new algorithm for determining nonhomogeneous 
spectra, which is simple, dynamic, efficient, and requires very little 
space. A simple modification (of limiting the parameters pairs to the 
b = 0 axis) changes the proposed algorithm into an algorithm for 
determining homogeneous spectra. 
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Segment ing Handwrit ten Signatures at 
Their Perceptually Important Points 

Jean-Jules Brault and Rejean Plamondon 

Abstmct-This correspondence describes a  new algorithm for seg- 
ment ing continuous handwritten signatures sampled by a  digitizer. Tbe 
segmentat ion points are found by means of a  two-step procedure. The 
principal step is to construct a  function that weights the perceptual 
importance of every signature point according to its specific neighboring 
points. The second step points out the various IocaI maxima of tbis 
function that correspond wheR the signature should be  segmented. The 
method is well illustrated and tested on  a  number  of signatures that 
requin different kinds of segmentat ion decisions. 

Index Terms-Corner detection, handwritten curve partitioning, band- 
written signature, perceptual importance of an  angle, segmentat ion. 

I. INTRODUC~~N 

The goal of an automatic signature verification (ASV) system 
is to confirm or invalidate the presumed identity of a signer from 
information obtained during execution of its signature. The techniques 
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i that have been proposed in the literature for designing ASV systems 
may be divided into two major groups: those based on functions 
derived from recorded signatures during their execution and those 
based on certain specific global parameters. The first approach 
has yielded better results to date (as measured by rates of false 
rejections and acceptances), but further improvements must be made 
in order to lower the error rates to acceptable levels for general 
public applications [9]. We are concerned here by systems that 
record dynamic information (mainly the execution sequence) from 
a digitizer. 

It is generally accepted that highly unstable and easily imitated 
signatures are among the main causes of deterioration in ASV system 
performances since the threshold to settle genuine and authentic 
signatures is then very difficult to adjust. One proposed way to 
help solve this problem is to model a typical imitator by specifying 
the various steps that must be done to copy, both visually and 
dynamically, any signature [2], [4]. Indeed, with this model, it 
is possible to adapt the threshold according to the intrapersonal 
variations of a signature and according to how difficult it is to forge 
by a potential imitator [3]. 

Fig. 1. Curve showing the points belonging to the domain of vertex i. 

fixes arbitrarily be 
and is not able 

found 

II. A NEW SEGMENTATION ALGORITHM 
One of the first steps a forger has to do is look into a signature to 

extract its perceptually important points. Consequently, a segmenting 
algorithm must be able to find accurately the apex of each peak 
present along the handwritten curve. However, according to Fischler 
and Bolles [S], different goals for the segmenting of a continuous 
plane curve could result in different segmentation points, even if 
the curve is very simple. Our goal here is to segment a handwritten 
signature to allow a person to rebuild it with a minimal number of 
points and to produce segments that are as close as possible to the 
psychomotor reality of their execution. 

The segmentation algorithm that we propose in this paper (an early 
version was published in [l]) is roughly similar in some respects to 
the two proposed by Kruse and Rao [7] and by Freeman and Davis 
[6]. However, we consider that a comer could be made of any number 
of points, and the algorithm itself must determine the length and the 
specific domain of every potential vertex. 

Several interesting techniques that segment continuous lines in 
various ways have already been proposed in the literature in fields 
other than ASV. Three typical approaches are briefly presented in the 
following paragraphs for illustrative and comparative purposes. 

The “split and merge” algorithm proposed by Pavlidis and Horowitz 
[8] is based on an iterative approximation of a curve by straight 
segments that drive an error norm under a specified threshold. This 
method is suitable for the approximation of a curve by a polygonal 
line but has a tendency to result in too many segmentation points; 
moreover, they are not always well centered on the apex of the peaks. 

Moreover, in a recent model, Plamondon [ll] has proposed a 
general segmentation framework for the analysis of handwriting based 
on a theory of rapid movements [lo]. According to that theory, 
handwriting is made of curvilinear and angular strokes that are 
partially superimposed due to some anticipation effects occurring in 
the generation of fast complex movements. Since the beginning and 
end of these strokes are partially hidden in the signal, it is shown that 
a consistent handwritten segmentation theory should take into account 
large units of handwritten signals because one of the most efficient 
ways to extract these underling strokes is to perform an analysis- 
by-synthesis experiment over a whole component (i.e., pentip traces 
produced during a continuous pen-down movement). 

The technique proposed by Kruse and Rao [7] is based on 
calculating a “sliding correlation” between a mathematical “model 
of a comer (or vertex)” and portions of the curve joining s points. 
The apex of the “comer” must correspond to the local maxima of 
the correlation function. The main shortcomings of this method are, 
in our opinion, the too-restrictive definition of the comer model 
and the arbitrary fixed domain (s points) of every possible vertex. 
Consequently, it would make it impossible to adequately quantify 
the importance of a vertex made up of much more than s points. 

A. Background 
Knowing that signatures are considered to be plane curves made 

of sequentially equidistant points, the main idea of the algorithm is 
the following. For each point i of this curve, the algorithm tries to 
iteratively construct a vertex centered on that point with the help of 
neighboring points to either side of it until some conditions were met. 

Freeman and Davis [6] proposed another type of segmentation 
technique that also involves a “sliding” analysis of portions of the 
curve joining s points. In this case, however, the s points are used to 
locate the discontinuities along the curve. Three indices are calculated 
for each successive (and overlapping) portion of s points; one index 
C(i) is related to the severity of the curvature combining these s 
points, and the other two are related to the length of the discontinuity- 
free region (backwards (lb(i)) and forwards (If(i))) from the point 
i. The importance of a given vertex i is calculated with the formula 

As an example, it is seen in Fig. 1 that there must exist some 
geometric conditions such that some pairs of points cannot be 
considered to be part of the domain of a vertex centred on i (such as 
the pair of neighbors (i f 6)). Furthermore, we note that the pairs of 
points of the i domain do not contribute with equal weight to making 
the vertex i look important. 

B. Parametric Formulation 
More precisely, the geometric parameters shown in Fig. 2 are 

calculated for each pair of neighbors i f n( for n = I,2 . . .). 
hrtuitively, the more the two angles 6’,(i, n) or &(i, n) approach 
x/2, and the fewer the pair of straight segments associated with 
these angles contributes to making the point i singular (relatively 
to its neighbors). As a result, by a suitable analysis of the angles 
e,(i, n) and &(i, n), one can determine whether or not the pair of 
points i f n are parts of the domain of i and, in addition, estimates 
the importance of the contribution of these points. 

Imp(i) = C(i)Jw. (1) 

The segmentation points are the ones located, after a proper filtering, 
at the maxima of Imp(i). This interesting method, however, suffers 
the same kind of shortcoming as the Kruse and Rao technique [7]; it 

. . I 
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Fig. 2. Curve showing the various geometric parameters used to determine 

the domain and the perceptual importance of point i. 
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Fig. 3. Effect on perception of flattening the vertex of a curve. 

Determining the conditions for which a pair i f n belongs to the 
domain of vertex i is straightforward. The angles @r(i, n) and &,(i, n) 
must satisfy the following inequality: 

p,ci, n)l and I@b(i, n)l +  enlax (2) 
where 6’,,, is a threshold value between 0 and 7r/2. The importance 
of their contribution is calculated by this empirical formula 

zhfP(i, n) = cos(@b(i, n)) * COS(ef(i, n)). (3) 

The trigonometric function cos was used for its adequate behavior in 
the range of angles concerned, whereas the multiplication operation 
takes into account the required simultaneous effect of the pair of 
points to make the vertex i important. 

The total contribution of the iVd( i) points belonging to the domain 
of i (the ones that satisfy the inequality (2)) is calculated by 

Nd(i) 
FZ(i) = C ZMP(i,n). (4) 

n=l 

C. Necessary Refinement 
Conceptually, a vertex usually appears between two sides. How- 

ever, a vertex is not always limited to one single point, and mutually, 
sides are not always made of straight lines. Therefore, a vertex could 
be interpreted as a side and vice versa. Fig. 3 illustrates the problem 
very well. In Fig. 3(a), the point I is, without question, the vertex 
of the curve but, as the vertex flattens (see Fig. 4(b) and (c)), two 
secondary vertices (I’ and Z”) appear and became important at the 
expense of vertex I. One way of resolving this difficulty is to replace 
(4) with the following equation: 

N&i) 
FZ(i) = C ZMP(i,n). 

n=Ng(i) 
(5) 

The original algebraic sum of (4) has been amputated by the No(i) 
first contributions, where the value No(i) is determined in the 
following way. Suppose that the first M(i) pairs of neighbors of i 
have their angles Br and 6% greater than B,,, (for example p) since 
each point of these first M(i) pairs go in nearly opposite directions 
from i; they weaken the perception of i as a vertex. Consequently, 
it would be reasonable to inhibit the sum by an additional 2 M(i) 
neighbors. In other words, the points I’, II’, J, and H of Fig. 3(c) 
could be seen to be the vertex of a square, and thus, the point Z  
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Fig. 4. (a) Signature and  its corresponding segmentat ion points as found with function FI( i); (b) function FI( i) and  the localization of local maxima 
8  -3*/a, I< = 3). max - 

could no longer be considered to be a vertex. The value No(i) would 
then be equal to KM(i) with K preferably being greater than or 
equal to 3. 

D. Locating the Segmentation Points 
The identification of the segmentation points from the function 

FZ(i) is very simple because this function usually comes in the form 
of groups of nonzero values spaced by group of zero values. Each 
of the nonzero groups represents a vertex, and the max imum value 
of each group is said to be its most perceptually important point. To 
be efficient, the sampled signature data must be preprocessed with a 
moving average filter (with a gaussian kernel) to remove the noise 
that comes with any acquisition made with a digitizer. 

There are, therefore, only two parameters to be predetermined 
(@,,, and K) and, as will be shown in Section III, their exact values 
are not very crucial. 

III. EXPERIMENTAL RESULTS 

This new algorithm has been applied in an experiment [2] to 
segment 24 signatures requiring around 700 different segmenting 
decisions. Note that this signature database was built with the help 
of right-handed, North American, European, and Asian signers. 

Figs. 4 to 7 show typical results obtained through the application 
of the method described in the preceding section. Fig. 4(a) depicts 
a signature to be segmented, and Fig. 4(b) shows the function 
FZ(i) obtained with parameters emax = 37r/8 and K = 3. The 
segmentation points numbered on the signature correspond to those 
shown on function FZ(i). It is interesting to note that the amplitude 
of FZ(i) indicates the necessity of choosing i as segmentation points 
while its width indicates the uncertainty involved in choosing a single 
segmentation point for a given vertex. For example, the amplitude of 
FZ(i) at point #2 is greater than that at point #3, which is itself 
greater than the one at point #4. On the other hand, the large width 
of vertex #B expresses the fact that adjacent points could have also 
been chosen to the right, or to the left, of the one chosen automatically 
by the algorithm. In the case of vertex #2, the narrow width of FZ( i) 
expresses no ambiguity at all. These results seem to agree with our 
relative perception of each of these vertices. 

Fig. 5 shows how function FZ(i) changes with variation of the 
parameter emax (where parameter K is fixed at 2 instead of 3 to 

d) 

b) 

d 
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i 

Fig. 5. Evolution of the function Fl(i) with variation of parameter emax 
(with Ii =  2). 

better see the effect of B ,,,). It may  be seen that function FZ(i) 
becomes more selective as 6’,,, diminishes. When b’,,, is fixed at 
x/2 (its max imum value), the central point between vertices #A and 
#B in Fig. 4(a) (indicated by an arrow in Fig. S(a)) is considered to 
be a vertex, as previously discussed about point I of Fig. 3(c). When 
e max  diminishes, the importance of this point tends rapidly toward 
zero. If, however, emax becomes too small, the value of FZ(i) at 
vertex #B, for example, will also become too small. 

The particular values of the thresholds, once fixed, are perhaps 
debatable since thresholds that are considered to be adequate for one 
signature may  not be adequate for another (pattern recognition is the 
art of the thresholding . . .). Nevertheless, the variations in FZ(i) are 
minor within a relatively wide range of values of its parameters. For 
example, some signatures segmented with the same parameters as 
those used for a signature in Fig. 4 are depicted in Figs. 6 and 7 with 
their segmentation points. 

One of the main qualities of the method, besides its simplicity, is 
probably its scale factor independence. Indeed, it is able to identify 
the segmentation point of the very large and smooth vertex #l (or 
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Fig. 6. Signature segmented with function Fl(i)(B,,, =  3r/8, K =  3). [41 

a) 

F/(i) 

b) 

Fig. 7. Signature segmented with function Fl(i)(B,,, =  SK/~, II: =  3). 

the next one after #l) of Fig. 7 as well as the small and acute vertex 
#4. A drawback of the method (and perhaps of every method?) is its 
difficulty to segment an almost complete circle, as in the one shown 
after point #5 in Fig. 7. Indeed, function FZ(i) of Fig. 7(b) appears 
with two local maxima without the function passing through zero. 
The segmenting point indicated by an arrow on Fig. 7(a) was added 
manually afterwards for the sake of the discussion. To overcome this 
problem, it is necessary to diminish the value of Omax, allowing FZ( i) 
to reach zero between the two peaks. 

IV. CONCLUSION 

We have presented an algorithm that makes it possible to estimate 
the perceptual importance of each of the points of a signature (or 
other types of continuous cursive handwriting) as a basis for its 
segmentation. The main idea of the algorithm is that for each point 
i of the signature, it tries to iteratively construct a vertex centred on 
that point with the help of neighboring points to either sides of it until 
certain geometric conditions are met. The method has been applied 
successfully to a signature database, and the location and relative 
importance of the segmentation points are generally in agreement 
with human perception. Moreover, they are also in accordance with 
our most recent segmentation theory [ll]. An interesting application 
of the algorithm is to use it to quantify one of the difficulties (at the 
perception level) that could be experienced by a typical imitator in 
reproducing a signature [2], [4]. This difficulty index, together with 
an intrapersonal variation index, could be used to identify problematic 
signers in a particular signature database and adapt the thresholds of 
the ASV system to improve its overall performance. 

One object of our continuing research effort is to implement the 
algorithm on a neural network and automatically fix the optimal 
thresholds of the only two parameters of the method. 
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Fast Nearest-Neighbor Search in Dissimilarity Spaces 

And& Farag6, Tam& Linder, and Giber Lugosi 

Abstmct-A fast nearest-neighbor algorithm is presented. It works in 
general spaces where the known cell (bucketing) techniques cannot be  im- 
p lemented for various reasons, such as the absence of coordinate structure 
and/or high dllensionality. Tbe central idea bas already appeared several 
t imes in the literature with extensive computer simulation results. This 
paper provides an  exact pr&abilistic analysis of this family of algorithms, 
proving its 0( 1) asymptotic average complexity measured in tbe number  
of dissimilarity calculations. 

Index Terms-Average complexity, dissimilarity spaces, fast nearest- 
neighbor search, pattern recognition, probabilistic analysis of algorithms. 

I. INTRODUCTION 

Finding a nearest neighbor of a point among several others is a task 
one often encounters in a number of practical situations such as vector 
quantization of signals, pattern recognition, etc. In a Euclidean space, 
this is one of the so-called closest-point problems of computational 
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