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Abstract

We propose a method of extracting cryptographic key
from dynamic handwritten signatures that does not require
storage of the biometric template or any statistical
information that could be used to reconstruct the
biometric data. Also, the keys produced are not
permanently linked to the biometric hence, allowing them
to be replaced in the event of key compromise. This is
achieved by incorporating randomness which provides
high-entropy to the naturally low-entropy biometric key
using iterative inner-product method as in Goh-Ngo, and
modified multiple-bit discretization that deters guessing
from key statistics. Our proposed methodology follows
the design principles of block ciphers to result in
unpredictable key space and secure construction.

1. Introduction

It is widely believed that the use of biometric as the keys
in cryptographic protocols may be the solution to the
issues of poor security in password-based access systems
and stolen private keys. In this paper, we consider
utilizing dynamic handwritten signature as biometric for
key transformation because it is a physically and
universally accepted method of authentication. We
propose that a secure and good cryptographic key
extraction technique from dynamic handwritten signature
should have the following requirements:-

- No signature template storage. Most handwritten
signature verification schemes require a template of the
signature to be stored for comparison later. This provides
no security in the event the template is stolen as the user,
inconveniently, must register a new signature.

- Refreshable keys. Previous methods of Monrose [1-2],
Davida [3] and Chang et al [4] methods derive keys
straight from biometrics to be used in various
cryptosystems. Again, in the event of compromised key,
the user has to change his biometrics, which is not feasible
for physiological biometrics like face, iris and fingerprint.
Keys that can be replaced in the event of key compromise
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will be an important consideration for integration into
cryptographic protocols.

- Secrecy protection. Throughout the transformation
process, no statistical information that can be used for
reconstruction of the biometric data should be revealed.

- Unpredictable key space. It should not be possible for
an adversary to perform a statistical extraction of key
space paiterns based on intercepting multiple keys. The
keys should be sufficiently different in terms of bits from
non-genuine keys, and should be uniformly distributed.

- Secure transformation. The transformation process
should follow good security design principles as described
by Shannon [5], to promote robustness  against
cryptanalysis. The transformation from dynamic
signature to cryptographic key should not be reversible to
thwart attempts in recovering the biometric.

- Error correction. Since every capture of the hand-
signatures is not exact, a tolerable application of
correction is needed to ensure that the keys are stable
enough to be used as cryptographic keys.

2. Literature Review

Biometric to cryptographic bitstrings transformation
method is a relatively new direction of research, spurred
on by the need to incorporate biometrics data into
cryptographic algorithms and protocols. Key generation
from voice passphrase was proposed by Monrose et al
[1][2] and uses a scalable vector of biometric features in
conjunction with a randomized lookup table generated
using generalized secret sharing scheme. The biometrics
iris identification in Davida et al [3] uses a different
approach in that error correction codes are used. During
enrollment, a digital signature that links the iris biometric
is generated and stored onto a trusted authority distributed
smartcard. Chang et al [4] utilised user-dependent
statistics to generate multiple bits which allow for more
compact and distinguishable keys. The feature space is
divided into multiple segments allowing more than one
bits to be assigned depending on the number of segments
specified by tuning the segment width and boundaries.
The main security issue with these schemes is that the




keys are permanently associated with the biometric eg.
when stolen a new biometric need to be used which is not
possible for physiological biometrics. Additional token
may be combined with the biometric to allow cancelable
key as in Soutar et al [6], which combines the Fourier
transforms of biometric images with a random digital key
enabling the key, or bioscrypt to be modified later in the
event of key loss. However, the scheme did not explain in
a satisfactory manner the cryptographic security of the
transformations and there were not results published. Goh
et al [7] introduced cancelable keys via inner product
between randomized token and face data and is
advantageous in comparison to Soutar et al as the step is a
one-way process. Juels-Wattenberg [8] extended the
work in Davida et al [3] by introducing the idea of a fuzzy
commitment. A difference vector is computed by taking
the difference between the biometric key and a reissuable
secret. At verification step, the test biometric is added to
the difference vector to recover the secret that will be
decoded back to the original secret using error correction
code. Next, Juels-Sudan [9] improved the earlier version
by incorporating polynomial-based secret sharing on the
secret message in their “fuzzy vault” scheme. Clancy et al
{10] implemented the fuzzy vault scheme on fingerprints
but also pointed out that a perfect Juels-Sudan vault
scheme is not possible to be implemented and presented
methods to improve and optimally configure the vault for
fingerprint data.

The first biometrics hash on dynamic hand-signature
was proposed by Vielhauer et al [11,12] which uses a 50-
feature-parameter set from dynamic hand-signature and an
interval matrix to store the upper and lower threshold
permissible for correct identification. - Another scheme
similar to Vielhauer and Chang et al is Feng-Chan [13]
which also uses specific boundaries for each user. The
scheme uses 43 features (but not all are published) and
reported 8% EER but the uniqueness of the output vector
is only 1 in 2. The limited feature extraction using
parameter-based approach in these methods could not
support use in cryptographic systems as they are small in
key space, the keys are not cancelable and more
importantly, they have generally low-entropy. They are
also not secure due to storage of user specific statistical
boundaries that could be used to recover the biometric
features. Yip et al [14] combines the methods of Goh-
Ngo and Chang to enable longer and cancelable keys but
however, the user-specific key statistics required to
correct the feature vector allows an adversary to easily
guess the most probable combination from the
compromised user boundaries information and reduced
number of segments eg. smaller space.
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3. Proposed Method

Our method incorporates the inner product-based mixing
with random token, multiple-bit discretization and
permutation to result in replaceable cryptographic keys, in
addition to a longer and unpredictable key space. We
improved on earlier work in [14], particularly in the area
of security, by (1) using population-wide instead of user-
specific boundaries for multiple-bits discretization, (2)
forcing the number of segments in discretization space to
be of be 2" so that an adversary has to search all possible
space, (3) permutating the pre-keys to deter multiple keys
attack, and (4) using error correction codes to compensate
for the loss of accuracy due to (1) and (2). The outline of
the proposed method (Fig 1) can be loosely divided into
three sections: (1) Feature extraction whereby the raw
data is processed into a compact representation, (2)
Biometric hashing whereby the extracted feature is
combined in an irreversible step to result in a binarised
pre-key vector and (3) Correction where the pre-key is
restored within a permissible threshold to the template
key.
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Fig 1: Proposed method




The detailed steps are as follows:-

Step 1. Discrete Fourier Transformation (DFT), first
proposed for hand-signature feature extraction by Chan-
Kamins [15], is the process of transforming a time series
into frequency domain and can be implemented with the
Fast Fourier Transform algorithm [16]. The DFT is useful
as it provides a translation invariant conversion of the
positional and velocity hand-signature signals. A discrete
sequence x can be represented by a Fourier integral of
form:

x(n):L I X(e*)e™ de withj= 3 [Eq. 11
2,

that represents x as a superposition of infinitesimally
small complex sinusoids. Conversely, the Fourier
transformation of a discrete time sequence x is defined to
be

X)) = Z x(n)e™™ (Eq. 2].

=0

In general, the Fourier transformation is a complex-valued
function of @ and can be expressed in rectangular form
as

X(€")=Xp (¢")4X, () [Eq.3]
or in the polar form as

X(E) HXE*)1e*”  (5q.q)
where |x(ei")|=«b{nh.xl2 is the magnitude and

Kx(eim)qan-l_x_l is the angle of the Fourier transform.
Xg

In our experiment; we found that the real, imaginary and

magnitude DFT of the complex input of positional

information (x+yj) and component velocity (x’+y’j), and

real input dist (= A/X>+y” ) and vel (=,/(x')2+(y')2 )

gave the lowest error rates (in terms of Euclidean distance
measurement). We also did not perform any additional
steps to the raw signals as we noticed that pre-processing
using spline interpolation would not improve the
performance as also confirmed in [17] because it would
introduce spurious points that distort the signals. Each of
the transform, z are then normalized by dividing with its
norm.

Step 2. Concatenation of the truncated DFTs of the raw
signals to form the biometric feature b’. Truncation
involves extracting the 13 most significant amplitudes of
the DFT as shown in Chan-Kamins. For complex input,
the DFT will be non-symmetric hence the first and last 13
significant amplitudes signal were also extracted. For real
input, only the first 13 amplitudes are considered.

Step 3. Normalization, by subtraction of the mean vector
(obtained at training of 10 signature samples from
population), is necessary to ensure that all the biometric
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feature vectors are centered at the origin. This guarantees
that the normalized biometric feature, b, will have zero
mean.

Step 4. Iterative inner product as in [7], is easily
implemented as the successive inner products, h; = <t;1 b>
for i = 1,..,r where 1 < 1 < Dieggn. The process projects b
onto a random subspace and its random basis is formed by
random vectors ty, t;, .., t,. The important pre-requisite for
vectors t; is that ¢, L t; fori# j and t; #t; so that they are

all linearly independent. The orthogonalization of the
random vectors be can be straightforwardly implemented
with Gram-Schmidt process. This guarantees that the
projected vector elements will also be randomly
independent of each other. The random vectors are
generated based on a stored token, T using some pseudo-
random number generation (PRNG) following the
Gaussian distribution zero mean and unit variance.
Again, after projection, h will be normalized to (-1,1).
Step 5. Discretization is an error correction step where
the projected vector in real space is transformed into the
an index space. Because biometric data are not exact, we
consider only those elements that fall within a certain
deviation from the mean value to be genuine. This is
achieved by dividing the vector element space into 2"
segments by adjusting to the standard deviation (stdev)
and the implementation is outlined below:-

e At enrollment, compute population-wide stdev;

= J(Z L ) /KU for K=10

number of training sample, U number of users and

mean by, , for each element in h.
e Then estimate and store the number of segments

n,={NI min(abs[l—z("_ D _ (stdev,x2xk)]}.N=1..10}

for i=L..bicpgm.
e At verification,” the discretized vector for random
h,—(-D1.2" |
1-(-1)
Step 6. Permutation is necessary to provide diffusion into
the key space so that the influence of each element is
spread to other parts of the pre-key, p. Again, we utilize
the PRNG to retrieve another random sequence of indices
s (generated based on stored token as the seed), by index
sorting. The permutated vector is p; =ds, .

projected test input his d, = [

Step 7. Binary representation is taken in Gray coding,
p; =gray(p,) because the consecutive Gray codes differs
by 1 bits by Hamming distance, and hence will allow
indices (from test input) near to the genuine segment to be
corrected later in Step 8, provided that the distances are
within a certain permissible threshold.




Step 8. Correction is applied to p to correct it into the
template key without compromising the secrecy of the
actual key itself. This is done using error correction
codes such as Reed-Solomon (RS) or Hamming Error
Correction. During enrollment, majority voting is used to
determine the template key eg. for every bit, if the
majority for all the training pre-keys are 1, set the
template key to 1 and vice versa. Then, a parity
checksum is generated based on the template key, and
only this checksum is stored hence preserving the secrecy
of the template key. At verification, the user appends the
parity checksum to the test pre-key to hopefully decode it
(as closely as possible) into the template key k. If more
than a certain threshold of bits are different, the code will
not correct ie. the cases of impostors or different users.

4. Security of the Proposed Method

Shannon [5] has outlined several principles of
computationally secure cryptosystems: (1) Confusion, (2)
Diffusion and (3) Product principles. The basic idea
behind these principles is to obscure the redundancies in a
plaintext (biometrics) so that the ciphertext (key) will be
unpredictable.  Confusion conceals the relationship
between the biometrics and the key so that a cryptanalyst
cannot derive the statistical patterns by studying the keys.
Diffusion on the other hand, dissipates the effect of each
element of the biometrics over the key space and can be
implemented using permutation or a combination of
variant permutations. Finally, the Product principle states
that the systematic cascading of different types of ciphers
in a single cryptosystems will increase the cipher strength
provided if the product ciphers are associative but not
commutative (forward-only transformation). These
principles are typically employed in cipher blocks such as
IDEA or DES [18]. In our scheme, the confusion
principle is applied in the iterative inner product-
discretization step and is analogous to the S-box
construction in IDEA which uses multiplication but in
binary space. The core transformation of the former uses
inner product which is an irreversible process since
solving inner products for its individual components is an
intractable problem ie. cannot be solved in polynomial
time.
Proposition 1: Factoring inner products of biometric
vector, b and random vectors, t={t.l}i’=I , is an intractable
problem if 1 <1 < bieggm, €ven if t is known.

Proof: The iterative inner products {h, =<t Ib>},
form r system of equations where t; L t; fori# jandt;#

t. Since there are length(b) number of unknowns and
only r < biengn number of equations, the system of
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equations has infinite number of solutions and hence, b is
not recoverable in polynomial time. Therefore, factoring
b from the inner product h and t is an intractable problem.

The discretization step quantizes the random projected
vector space into the 2" space, and hence, is an
irreversible substitution process. The diffusion principle
used in the permutation step of our method is analogous
to the P-box construction in basic block ciphers. Instead
of using a pre-set permutation, we utilized the random
sequence generated from the stored token to spread the
effect of the distribution evenly. Note that this process is
linear and hence can be reversed easily but the reversed
result h will not reveal anything about the biometric data,
b, due to Prop 1.

Proposition 2: The sequence of iterative inner product,
discretization, permutation and binarization obeys the
Product principle. )

Proof: The iterative inner product can be defined with
individual R;: R‘xR? - (-1D),

discretization with D:(-1,1)* =27, , permutation

function

P:Z;,,Xn(n)—)Z;, with 7t(n) permutation index,
and binarization B:Z’, —{0,1}" for some positive

integer g, d size of biometric feature, and n size of the
inner product vector. Because R is irreversible from Prop

1 and range D # domain {Ri}:=1 so RxDis non-

commutative. Because D is a lossy function, DXPis
non-commutative. Also, P is permutated with random
sequence from token T so P is not reversible as longas T
is unknown. Hence, PxBis non-commutative.

Therefore, sequence of {Ri};XDXPXB is a non-

commutative or one-way function that obeys the Product
principle.

5. Empirical Results

There are a few important criteria for measuring the
unpredictability of cryptosystems: (1) Completeness [19],
(2) the Avalanche effect [20] and (3) Bit-independence
[21). Completeness of a cryptosystems can be guaranteed
if each output bit is dependant on all the input elements
and not subsets of the input. Meanwhile, the Avalanche
effect requires that changing an element in the plaintext
should affect the change in the key space with
approximately probability of one half.




Proposition 3: Each change in the key is dependent on
entire input biometric, b.

Proof: In the iterative inner product step, the random
vector t; is applied to b in individual inner product h; = <t;
16> for i = 1,..,f < bieggn. Since t; # t, every b; is
dependent on all (and not a subset) of b.

Proposition 4: The bits of the output pre-key are
independent.

Proof: The inner product of biometric b and token t can
be decomposed into the orthogonal and parallel (to
random vector t) components
b, =<blt, >=<bl t.f >+<bl ti" >. The requirement
that ¢ Lt fori# j and t; # 4 guarantees that t,-" L

and hence, vh, are independent.

Next, we consider the empirical results of the keys
produced from the proposed method. We use the hand-
signature database from SVC 2004 [22] for Task 1
(without pressure information). Fig 2a-b considered the
Hamming distances of the pre-keys for the genuine users,
skilled forgers and random forgers. Fig 2a shows the
distribution for different token scenario while the worst
case scenario of the forgers using stolen tokens is depicted
in Fig 2b, both for k=2. The selection of optimal
configuration k=2 was done based on the mean
distribution of the various users (Fig 3) and the equal
error rates (EER) (see Fig 4) for varying k. The chosen
configuration has the lowest EER for the worst case
scenario of skilled forgery with stolen token. Note that in
Fig 3, the mean of 0.5 for the random user (with different
token) case is consistent with the Avalanche effect.
Because the skilled forgeries (with different tokens) are
more similar to the genuine user case, its distribution is
about 0.4. The EERs for random and skilled forgery
(with different token) are 0% and <=2%. The lowest
EER between genuine and skilled forgery with stolen
token is ~14.1% and genuine and random curves is
~6.4%.
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Fig 5a & 5b show the effect of error correction using RS
with symbol size M=6, code size K=33, for both optimal
and worst cases respectively. This configuration is
selected based on the mean distribution and EER shown
in Fig 6 & 7 using various correction codes of RS and
Hamming. Note that for the different token scenario,
although the genuine and skilled forgery distributions
shifted towards zero, the random forgery remains at 0.5 as
with the no-correction case. From Fig 6, Hamming is not
a suitable choice as the skilled forgeries were over
corrected. For the worst case of stolen tokens, both the
skilled and random impostor distribution shifted left, and
have higher skilled EER ~17% and Random EER ~7%
using the best configuration. The experiments suggest
that the stolen tokens pose a security risk and hence, when
a user discovers that his token has been lost, should




replace and register for new token. The replacement of
token will not involve revealing the information about the
actual biometrics ie. the user need not change his
signature.
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6. Conclusion

We believe that the use of block cipher principles in our
method is a significant contribution to the design of
secure biometric authentication not realizable in
conventional biometric key generation system that
required template and/or key statistics storage and where
the keys are non-replaceable. The experiment results
confirm the proposed method demonstrates high
unpredictability of key space and as long as the tokens are
not stolen, cryptanalysis will be reduced to only brute-
force attack on the key space. The one-way
transformation and non-storage of user-specific statistics
guarantee that an adversary cannot recover the biometric
feature vector from the stolen keys.
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