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Reliable On-Line Human Signature 
Verification Systems 

Luan L. Lee, Toby Berger, and Erez Aviczer 

Abstract-On-line dynamic signature verification systems were 
designed and tested. A data base of more than 10,000 signatures in 
(I, y(t))-form was acquired using a graphics tablet. We extracted a 
42-parameter feature set at first, and advanced to a set of 49 
normalized features that tolerate inconsistencies in genuine signatures 
while retaining the power to discriminate against forgeries. We studied 
algorithms for selecting and perhaps orthogonalizing features in 
accordance with the availability of training data and the level of system 
complexity. For decision making we studied several classifiers types. A 
modified version of our majority classifier yielded 2.5% equal error rate 
and, more importantly, an asymptotic performance of 7% false 
acceptance rate at zero false rejection rate, was robust to the speed of 
genuine signatures, and used only 15 parameter features. 

Index Terms-Signature verification, human signature verification, 
dynamic signature verification, on-line signature verification, point-of- 
sale, point-of-delivery, forgery. 
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1 INTRODUCTION 

THE design and implementation of an on-line dynamic signature 
verification system involves data acquisition, feature extraction, 
feature selection, decision making and performance evaluation. 
Such problems have been discussed both in the by-now classic 
survey paper of Plamondon and Lorette [II and, more recently, in 
the sequel thereto by Leclerc and Plamondon 121. 

In this correspondence we describe an approach to designing 
reliable and effective on-line signature verification which includes: 
construction of a reliable data base, selection of optimum feature 
sets with or without forgery data available, finding classifier- 
independent feature selection procedures, obtaining reliable as- 
ymptotic global and individual performance, obtaining a suitable 
statistical model for signatures, minimizing the effects both of the 
inconsistency of genuine signatures and of the variety of forgeries, 
and adapting to practical limitations such as on-line response and 
limited memory size. We introduce new techniques for on-line 
human signature verification that are responsive to all these issues 
and yield performance satisfactory for point-of-sale (RX) appli- 
cations. Among articles that have appeared subsequent to the 
submission of this correspondence that overlap somewhat with 
our results are works by Dimauro et al. [3], Plamandon 141, Nelson 
et al. 151, Fairhurst and Brittan 161, and Yang et al. 171. 

2 DATA ACQUISITION 
A total of 5,603 genuine signatures were collected from a popula- 
tion of 105 human subjects which included 22 women and five left- 
handed writers. Some subjects contributed as few as 13 genuine 
signatures; one subject wrote his signature more than 1,000 times. 
About 90% of the genuine signatures were collected under 
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“normal” writing conditions. Because a signature verification sys-  
tem must be robust with respect to variations in writing speed, we 
also collected a set of 240 “fast” signatures from nine subjects who 
were asked to write their genuine signatures as fast as possible. 
The percentage reduction in writing time from normal to fast 
signing ranged from 10% to 50%. With respect to the size of sig- 
natures, the smallest rectangles that fit the largest and smallest 
signatures, respectively, measured 10 cm by 13 cm and 2 cm by 0.5 
cm. Signature writing times ranged from 1 s  to 14 s. 

The construction of a meaningful forgery data base requires care- 
ful planning. We employed three kinds of forgeries, namely: simple 
111, statically skilled, and timed forgeries. Although other kinds of 
forgeries have been suggested in the literature 111, we believe that 
the three kinds forgeries we used are the sorts most likely to be en- 
countered in POS applications. In simple forgery, we assumed that 
forgers know how to spell the genuine signatures. A total of 1,148 
simlple forgeries were collected. A forgery is considered statically 
skilled when, in addition to possessing all spatial information about 
the genuine signature, the forger is allowed to practice imitations 
both on paper and on the tablet. A total of 3,466 statically skilled 
forgeries were collected. For timed forgery, in addition to the static 
information about genuine signatures, the forger is provided during 
practice with information about the average genuine writing time. A 
total of 1,148 timed forgeries were collected. 

Additionally we collected 248 Chinese signatures from 23 sub- 
jects, 26 Arabic signatures from two subjects, 13 Tamil signatures 
from one subject, 13 Korean signatures from one subject, and 13 
Hebrew signatures from one subject. 

3 FEATURE EXTRACTION 

The first feature set consists of 42 personalized parameter features 
-13 static and 29 dynamic-as described in Appendix A. Some of 
the 42 features were inspired by the literature of handwriting veri- 
fication [Sl, 191, 1101, [151, after being appropriately adapted to our 
signature verification application. Others of the 42-feature set are 
our own contributions based on experience acquired form the 
signature collection procedure. The only preprocessing required 
here is to minimize the effect of the spatial resolution of the 
graphics tablet by eliminating one of any two consecutive sample 
points that were separated by only one or two basic spatial resolu- 
tion units. Spatial resolution of the tablet can seriously affect in- 
stantaneous features which involve only a few sample points. We 
eliminated the problem of signature rotation and shifting by pro- 
vidin.g a horizontal line on paper taped over the tablet surface as 
reference for writing. 

Preliminary experiments showed that the 42-feature set is highly 
sensitive to variations in size and speed of genuine signatures. 
Therefore, a second set consisting of 49 normalized features was 
constructed with the objective of rectifying these deficiencies 1131. 
The feature normalization procedure can be as complex as that pro- 
posed in 1111, 1161 or as simple as linear normalization. The effec- 
tiveness of the linear normalization procedure we employed de- 
pends on the extent to which the temporal assumption and the spa- 
tial assumption below are valid. We did not directly examine the 
degree of validity of these assumption, but our positive verification 
results strongly suggest that reality conforms well to these assump- 
tions. Temporal Assumption: an instance of an event will occur at 
roughly the same fraction of time of the writing duration of a signa- 
ture regardless of the overall signing speed. Spatial Assumption: 
linear scaling of the horizontal and vertical displacements, by possi- 
bly different scaling constants, will restore genuine signatures writ- 
ten larger or smaller than usual to the standard shape. 

Virtually no additional time or effort is needed to obtain the 
linearly normalized features from their nonnormalized versions 
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since the normalization factors-total writing time, total horizontal 
displacement, and total vertical displacement-were in the origi- 
nal 42-feature set. A detailed description of the normalized feature 
set appears in Appendix B. 

4 FEATURE SELECTION 
Relatively few attempts have been made to select an optimal sub- 
set of features from a larger feature set for automatic human sig- 
nature verification [S], [lo]. Moreover, these approaches either 
depended on the classifier being used or were not effectively 
tested by forgery data. Three feature selection algorithms are now 
described. The first selects features assuming availability of genu- 
ine signatures only. Let m(a, i) and $(a, i) be the sample mean and 
the sample variance of feature i computed from the reference data 
base of subject a. Then the distance measure for feature i between 
subject a and subject b is defined as 

d,(a, b) = 
ida, i) - m(b, i)J 

02(a, i) + 02(b, i) 
(1) 

W e  say that feature i has a higher order, or degree, of importance 
for subject a than does feature j in population P if 

d,(a) = minbeP,b+a d,(a, b) > minbtP,bin d,(a, b) = d,(a) 

In other words, we order features for subject u in terms of their 
“maximin” distance from the rest of the entire population P. Selec- 
tion of the k  best features is equivalent to selection of those k  fea- 
tures (i.e., those k  values of i) for which the distances di(n) defined 
by (1) are largest. 

When both genuine and forgery data are available, we replace 
(1) by 

d,(a) = 
(da, i) - m(f, i)( 

02(a, i) + o’(f, i) 
(2 

Here m(J i) and o’(f, i) are, respectively, the sample mean and the 
sample covariance of feature i computed from the data base of 
forgeries of subject a’s signature. When forgery data are available 
feature i is considered more important than feature j if d,(a) > d,(a). 
An extensive list of the individually ordered 42 features for each of 
22 subjects is available in 1131. Features should be selected for in- 
corporation in a classifier not just on the basis of such orderings 
but also with regard to how they are correlated with one another; 
see Section 4.2. 

Test results confirm that better performance can be achieved by 
using an opt imum individualized subset of features instead of 
using the whole feature set. However, individually optimized 
subsets may  be precluded by limitation of fast response time and 
memory  size. A feasible suboptimal alternative to the problem of 
finding an ideal feature set is to identify a so-called comlnon featwe 
set consisting of features that are good for most persons in the 
population. A common feature set is attractive if the procedure for 
finding it is simple and the degradation in performance is small 
enough relative to employing individualized feature sets. Our m- 
feature common set consists of those m  features with the highest 
relative frequencies of appearances in the subjects’ lists of m  best 
individualized features. Table 1 shows the selected common set of 
10 feature frequencies of appearances and the order of preference 
among them for the population of 22 subjects. 

TABLE 1 
COMMON 10 FEATURES SETS 

4.1 Classifier Designs 
The main task in classifier design is to deduce a distance measure 
between signatures that effects strong separation between the class 
of forgeries and the class of genuine signatures for each subject. 
However, the joint probability distribution of the features usually 
is unknown and difficult to estimate. Accordingly, many popular 
methods which involve probabilistic distance measures cannot be 
used and all approaches are more or less ad hoc. Majority classifi- 
ers, which implement the majority decision rule described below, 
have the advantage of being simple to implement while providing 
performance satisfactory for POS applications. 

Let mi and o,, represent, respectively, the sample average and 
sample standard deviation of feature i in the ensemble of an indi- 
vidual’s genuine signatures. Let n denote the total number of fea- 
tures used in decision process, let a be a fixed threshold, and ti be 
the value of feature i for the candidate signature (T) being tested. 
Define 

(3) 

The majority decision rule is “T  is declared a genuine signature if 
N, 2 n/2 and a forgery if N, < n/2.” Note that the majority rule is 
highly nonlinear, the decision region in the n-dimensional nor- 
malized feature space for accepting a signature as genuine being 
unbounded and, roughly speaking, consisting of n noncircular 
infinite cylinders centered in the origin, each with its axis parallel 
to one of M  feature coordinate axes. 

The problem of inconsistency of genuine signatures can be at- 
tacked by using normalized features. This reduces the false rejec- 
tion rate of the majority classifier for fixed a and a fixed set of n 
features but also reduces the forgery rejection rate. Accordingly, 
tradeoffs must be studied carefully to assess the utility of normali- 
zation. Intuition suggests that, if we do not altogether destroy the 
information that normalization removes from the raw signature 
data, we may  be able to use it to make the majority classifier per- 
form better than when it uses only normalized features. Two such 
modified decision procedures, designed to work in conjunction 
with t ime-normalized features, called “puesoft majority decision” 
and “prekard majority decision,” are described below. 

The presoft majority decision procedure consists of comparing 

the writing time, t,,,, of the signature being tested to the average 
writing time, t,,, computed from the subject’s genuine reference 

set. If ltn, - ?;,I > pi?,, where a nominal value for parameter /? is 0.2, 
do not normalize the dynamic features in the 49-feature set; oth- 
erwise, normalize them as usual. Finally, execute the conventional 
majority decision rule using the resulting 49 features. 

The presoft majority classifier penalizes signatures possessing 
highly deviant writing time by removing the normalization factor 
of signature writing time from the dynamic features. This is justi- 
f ied because considerable consistency in signature writing t ime 
was observed among genuine signatures. However, there still is 
hope for a genuine signature with an anomalous t, to be classified 
correctly if enough features in the 49.feature set behave satisfacto- 
rily. Similarly, some forgeries might escape detection even if they 
fail to pass the predecision procedure. 

The prehard majority classifier penalizes signatures with large 
lfro - t,( > & more heavily by declaring a signature to be a for- 

gery if (t, - t,( > /?t-,. 

4.2 Accounting for Feature Covariances 
Two shortcomings of the majority classifier are that it weights each 
feature equally and does not account for correlations among fea- 
tures. One approach to dealing with correlation is to employ a 
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Karhunen-Loeve (K-L) representation. Toward this end we first 
diagonized the sample covariance matrix of the feature set for the 
training sample of genuine signatures; usually only five or six of 
the resulting uncorrelated linear combination of features were 
needed to account for most (80% to 95%) of the overall variance in 
individuals’ genuine signatures. Next, we did the same for the 
training ensembles of “forgeries,” finding that we usually needed 
about 20 K-L features to account for the bulk of the variance. De- 
tailed description of extensive experiments on K-L features and 
their results can be found in [12]. 

W e  have also attacked the feature selection problem via neural 
nets and jackknife statistics. A single-neuron classifier yields an 
improvement in performance [17]; more general nets naturally 
yield further improvement [18]. Also, a bottom-up jackknife fea- 
ture selection algorithm can design majority classifiers with small 
feature sets and good Type I vs  Type II tradeoffs [19]. 

5  STATISTICAL MODEL 
A good statistical model for signatures would advance signature 
technology by quantifying interclass and intraclass variability 
among signatures [l]; forgery classes are particularly difficult to 
characterize. In attempts to address this problem, Hastie et al. [ll] 
recently proposed a statistical model for signature verification by 
computer which provides good results for relatively consistent 
signatures. W e  make no attempt to solve the complex and funda- 
mental problem of developing a statistical model for human sig- 
natures. However, by introducing a statistical model for the pa- 
rameter feature sets of genuine signatures, we were able to gener- 
ate enough simulated feature vectors to estimate the asymptotic 
performance of our signature verification systems and to check the 
estimate using data from the subject who signed 1,000 times. W e  
postulated an additive model, X = M  + N, where X = (Xi, X,, .., X,) 
is an n-dimensional random vector representing the signature’s 
parameter feature set, M  is an E-dimensional constant vector and 
N is an n-dimensional Gaussian vector with zero mean and covari- 
ante matrix C. 

6  EXPERIMENTAL RESULTS AND CONCLUSION 
Type I error (false rejection) and Type II error (false acceptance) 
are used to evaluate the performance of a signature verification 
system [l]. The key performance requirement for POS applications 
is that the Type II error must stay small (say, < 25%) as the deci- 
sion threshold is adjusted to drive the Type I error to zero. W e  
now present experimental results on majority classifiers which 
show their suitability for POS applications. Additional results can 
be found in [13]. 

Fig. la shows the performance measure of majority classifiers 
which employ four different lo-feature sets and the 13 static fea- 
tures set, all selected from the 42-feature set. The solid line and 
dash-dotted line are for subsets of 10 best individualized features 
selected, respectively, with and without reference forgery data 
available. The solid line with * is for the set of 13 static features. 
The dashed line is the case of the common lo-feature set selected 
from the reference data base, i.e., the Basic Data Base of six genu- 
ine signatures and eight statically skilled forgeries for each subject. 
The performance curve was obtained by evaluating the testing 
data base which has five genuine signatures and 22 statically 
skilled forgeries for each subject. Finally the dotted line shows the 
performance of the same common lo-feature set when not only the 
six genuine reference signatures but also the five genuine testing 
signatures were included in the procedure to search for a common 
feature set, and simultaneously the genuine testing data base also 
consists of the same 11 genuine signatures. 

W e  conclude from Fig. la: 1) that using a large genuine data 
base when selecting common feature results in better classifier 

performance, 2) that our common feature sets achieve perform- 
ance satisfactory for POS application, 3) that our feature selection 
algorithms provide opt imum individualized subsets of 10 features 
that yield excellent discrimination, and 4) on-line signature verifi- 
cation systems that include dynamic features are superior, espe- 
cially in POS applications where near-zero Type I error is needed. 

The majority classifier with the optimal individualized 34- 
feature set provided the overall opt imum performance relative to 
any size n of the subset of features selected from our 42 features 
when the feature selection algorithm used only genuine signa- 
tures. When both genuine and forgery data are available, the per- 
formance of subsets of 24 individually selected features is the best 
among subsets of features of any dimension selected from our 42 
feature set. These results shows that forgery data are desirable but 
not essential for feature selection; forgery data avail us of im- 
proved performance and simpler verifier structure. 

0.00 0.05 0.10 0.15 G20 

TyplEnvit& TypolGlURd~ 

Fig. 1. Performance comparison of the majority classifiers. (a) some 
individual and common majority classifiers; (b) real vs. simulated data; 
(c) 42 and 49 feature sets; (d) error rate vs. threshold; (e) presoft ma- 
jority classifiers; (f) prehard majority classifiers. 

In order to validate the efficacy of our statistical model, the per- 
fo:rmance of a majority classifier based on simulated data gener- 
ated by the model described in Section 5 was compared to that 
ob’tained from the real data. As shown in Fig. lb, for the optimal 
10 feature set the simulated results closely match those of the real 
data. Similar results were observed on most subsets of different 
orsders, except for cases of subsets with very small order, say five 
features, and that with very large order, say 42 features. However, 
the largest discrepancy in equal-error-rate performance only 
barely exceeded 5%. A possible explanation for this is that some 
features, such as the number of pen-ups and the number of dots, 
cannot be well-approximated by Gaussians. The performance 
curve of real data in Fig. lb was obtained from testing 1,000 
genuine signatures all collected from the same subject and 325 
statically skilled forgeries collected from 13 forgers. By comparing 
Fig. lb with Fig. la, we conclude that our statistical model is a 
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feasible tool not only for computing individual asymptotic per- 
formance but also for testing new classifier designs and reducing 
the burden of collecting extensive samples of raw signatures. 

Fig. lc shows the performance of the majority classifier using 
subsets of 15 best features selected from the 42 and 49 feature sets, 
and tested by the fast genuine signatures. The comparison 
strongly suggests that reliable signature verification systems re- 
quire normalized features in order to provide satisfactory per- 
formance in the presence of significant variations in writing speed. 
Perhaps most importantly, the performance curves in Fig. lc sup- 
port the validity of the assumptions made in Section 3 when we 
introduced the normalized feature set. 

Fig. Id shows the performance of a majority classifier versus 
decision threshold for the Fast Data Base and the Global Data Base 
using the best individualized 15 features selected from the 49- 
feature set. For POS applications we choose a decision threshold of 
2.5; this yielded a Type I error of less than 1% for the normal speed 
signatures(N) and a Type II error of 20%. Note that the same deci- 
sion threshold results in 5% Type I error(S) for the fast signatures. 
It is worth mentioning that in practice we would have a degrada- 
tion much smaller than 4% because subjects write their signatures 
fast relatively rarely. Also, we expect that they will be willing to 
tolerate a somewhat higher rate of rejection of signatures they 
scrawl in great haste. W e  conclude from Fig. Id that using a 
threshold in the interval from 2.5 to 3.0 for the best 15 features 
from the set of 49 normalized features results in a majority classi- 
fier that yields Type I and Type II errors suitable for POS applica- 
tions robustly with respect to the speed of genuine signature. 

The experimental results reveal that only 0.5% of the genuine 
signatures had writing durations that deviated from the subject’s 
average writing time by more than 18% (p = 0.18). Under normal 
conditions few if any people have signature writing t imes that 
deviate from their nominal value by more than 20%. Fig. le and- 
Fig. If show, respectively, the performance of the presoft and 
prehard majority classifier of Section 4.1. Comparing Fig. le and 
Fig If to Fig lc shows that notable improvements are achieved 
using modified majority decision rules. The prehard majority clas- 
sifier provides the best performance among those studied in this 
work: 2.5% equal error rate and, more importantly for POS, an 
asymptotic performance of 7% false acceptance rate at “zero” false 
rejection rate using only 15 individualized parameter features 
selected from the 49-feature set. Moreover, this was achieved de- 
spite the unrealistically demanding condition that many of the 
forgers were permitted to produce imitations that matched almost 
perfectly in signing time in addition to being given the opportu- 
nity to practice static forgeries extensively. In particular, the 
presoft majority classifier detected about 50% of the timed forger- 
ies while successfully classifying 99% of the genuine signatures as 
shown by the performance curve in Fig. 2. 
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Fig. 2. Error rates vs. types of forgeries 

Our findings provide the basis for an adaptive method and 
system for real time verification of dynamic human signature [141 
suitable for POS applications in regard to performance, memory  
and cost; the mean genuine feature values are easily adapted to 
changes in the signature of an individual with time. Tests on our 
verification system show that it is suitable for on-line implementa- 
tion. Using a PC with a 486-processor, the verification algorithms 
require less than 1.5 s  verification time, even without any effort at 
optimizing the algorithm code. Chip-based special purpose hard- 
ware in a commercial  realization of the system would run consid- 
erably faster. A smart card implementation also appears feasible. 

APPENDIX A - 42  FEATURE 
Before listing the 42 and 49 feature sets for convenience we intro- 
duce the following definition and notations: 

x0 = x(lst pen down) 

Y end = y(last pen up) 

Y “il7.7 = max imum y 

4 = Ix,,, - %1nl 
y. = y(lst pen down) 

X max = max imum x 

Y rmn = minimum y 

dy = IYmax - Y,,nI 
X end = x(last pen up) 
x  m m  = minimum x 

AX = total shift of (x) in pen downs 
Ay = total shift of (y) in pen downs 

1. Avg. writing speed (ir ) 
2. Max. writing speed (v,,,) 
3. T ime of max  speed (t(v,,,) 
4. t(lst pen move) - t(lst pen down) 
5. Total signing duration (r,) 
6. Total pen down duration (T,) 
7. Min horiz. writing speed 
8. T ime of Feature 7 
9. Total dots recorded 

10. Average dot execution time 
11. Number pen ups 
12. T ime of 2nd pen down 
13. Initial direction 
14. Dir. from 1st to 2nd pen down 
15. Dir. of 1st pen down to 2nd pen up 
16. Init. dir. after 2nd pen down 
17. Dir. from 1st pen down to last pen up 
18. Duration of vu, > 0 
19. Duration of 8, < 0 
20. Duration of uy > 0 
21. Duration of z)~ < 0 
22. Average positive u, 
23. Average negative D, 
24. Average positive ur 
25. Average negative v, 
26. Total o, = 0 events recorded 
27. Total uy = 0 events recorded 
2% Max v, - avg v, 
29. Max  V, - avg V, 
30. Max  v, - min v, 
33. Max  v, - min vuy 
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32. Max v, - min v, 
33. tkmr) rw 
34. tL,)l T, 
35. kL - xm) x  (ym - ym) = Am 
36. Signature length/A,,,, 
37. X0 - x,,, 
38. xmd - xm 
39. Xmn - &ml 
40. hn,z - XmJ / (ym - ym”) 
41. Standard deviation of x  
42. Standard deviation of y  

APPENDIX B- 49 NORMALIZED FEATURE SET 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 

33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 

Tw/Ts 
Time of max v/T, 
Average v/maximum v 
Duration of ZI, > 0)/T, 
Duration of vX < 0)/T, 
Duration of ~1, > 0)/T, 
Duration of D, < 0)/T, 
Duration of v, > 0 in pen ups (T, -TJ 
Duration of uu, < 0 in pen ups/(T, - T,) 
Duration of vy  > 0 in pen ups/CT, - T,) 

Duration of v, < 0 in pen ups)/(T, - T,) 
Normalized initial direction (d,/d,) 

Dir. from 1st to 2nd pen down/(d,/dJ 
Dir. 1st pen down to 2nd pen up/(d,ld,) 
Dir. after 2nd pen down/(d,/d,) 
Dir. before last pen up/(d,/d,) 
Dir. 1st pen down to last pen up/(&/d,) 
Total dots recorded. 
Number of pen ups 
Time of 2nd pen down/T, 

Total dot execution time/Tm 
Time of max v,/T, 
Time of min v,/T, 
Time of max v,/ T, 
Time of min v,/T, 
Total v, = 0 events recorded 
Total v, = 0 events recorded 
Number of quadrant slope changes 
i7 /max vX 
iT /max vY 
Min. v,/ V, 
Min. vY/ “y 

First time instance of v  # 0 
Am,, / (&*A,) 
Signature length/A,,, 
(xo - xm) /A, 
(xz - LJ /4 
LLd - xm) A 
(Xmd - xmJ/& 
(ya - ymJ/A, 
(yo - ym) /A, 
(ymtd - ym.J/A 
(ye,,, - ym) /A 
Ih,,, - x,,J / (y,mx - y,m,Jl/[&/&,l 
Standard deviation of x/b 
Standard deviation of y/A, 

47. Duration pos. slopes/durat. neg. slopes 
48. Writ. Dist. in quad. 1 & 3/that in 2 & 4 
49. Duration of high curvature time/T, 
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