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Abstract. The traditional approach to evaluating the performance of a
behavioral biometric such as handwriting or speech is to conduct a study
involving human subjects (naive and/or skilled “forgers”) and report the
system’s False Reject Rate (FRR) and False Accept Rate (FAR). In this
paper, we examine a different and perhaps more ominous threat: the
possibility that the attacker has access to a generative model for the
behavior in question, along with information gleaned about the targeted
user, and can employ this in a methodical search of the space of possible
inputs to the system in an attempt to break the biometric. We present
preliminary experimental results examining the effectiveness of this line
of attack against a published technique for constructing a biometric hash
based on online handwriting data. Using a concatenative approach fol-
lowed by a feature space search, our attack succeeded 49% of the time.

1 Introduction

It is standard practice in biometric authentication to test a new system and
report how well that system performs. In most cases, this information takes
the form of FRR (False Reject Rate) and FAR (False Accept Rate) curves.
Often, researchers perform studies with groups of university students and/or
other volunteers playing the role of the attacker (e.g., [3, 4]).

While such evaluations shed some light on the quality of the biometric, they
do not always provide a full picture of the overall security provided by the
system. In this paper, we examine a fundamentally different type of threat: the
possibility that an attacker has access to a generative model for the behavior
in question, i.e., an algorithm which can be used to synthesize a signal that
mimics true human input. Such models exist, for example, for speech and for
handwriting, as well as for other physiological phenomena. By combining this
with information gleaned about the targeted user (e.g., samples of the user’s
speech or handwriting obtained surreptitiously), an adversary could conceivably
conduct a methodical search of the space of possible inputs to the system in an
attempt to break the biometric.

We present preliminary results for attacks on a published technique for con-
structing a biometric hash based on online handwriting data, and conclude by
discussing possible areas for future exploration.
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2 Related Work

Much work has been done in the area of testing biometric systems for security
and performance. Bromme and Kronberg [1] proposed a system that integrates
into state of the art operating systems such as Windows 2000 and Linux/UNIX.
This framework allows the biometric system to log all information about its
operation for later inspection. In this way, real-world conditions can be studied.
The Bromme and Kronberg system is geared towards providing more accurate
feedback to the current maintainers of an already-deployed biometric, however.
It does not try to test a system from the point of view of a determined attacker,
nor does it allow researchers to compare systems that have yet to be deployed.

Another technique to help researchers test biometrics based on handwriting
has been developed by Vielhauer and Zoebisch [9]. This tool allows researchers
to study forgeries generated by a human with access to static and dynamic
representations of the true signal. The system presents the human forger with
several different prompts containing increasing information about the targeted
handwriting. The “attacker” first records a test sample with no information.
He/she is then shown a static representation of the true writing and asked to
input another test sample. Lastly, a dynamic representation of the handwriting
is displayed and the user is allowed to input one more test sample. Depending
on the characteristics of the test writer and the true signal, the accuracy of the
forgeries will vary widely.

Another approach to more directly studying the security provided by a bio-
metric system is presented by Monrose, et al. in [5]. This paper, which provides
the primary motivation for our present work, describes several types of attacks
against a speaker authentication system. The tested system extracts features
from the user’s voice, drawing entropy from both the passphrase spoken by the
user and how the passphrase was spoken. These features are then used to extract
a key from a data structure in which pieces of the true key are intermingled with
random data. This process makes it difficult for an attacker in possession of the
device to obtain any of the sensitive information stored on it.

The speech system in the above study was attacked using several methods.
The first was a standard human impostor, whereby someone other than the true
user tries to authenticate against the biometric. Next, a text-to-speech (TTS)
system was used to generate sequences of phonemes for the passphrase, with
various input parameters governing the type of speech produced. Lastly, a crude
cut-and-paste attack was attempted, employing a large inventory of the true
user’s speech. Phonemes which had been manually labeled in the inventory were
selected and concatenated to yield the targeted passphrase. Both the TTS and
cut-and-paste attacks were able to out-perform random guessing, but did not
work well enough to break the biometric. These results suggest, however, that as
an attacker acquires more information, it becomes easier to breach the system.

In a test of another speech-based system, Masuko, et al. [1] attempted to
use information about the pitch of voice samples to enable the system to reject
synthetically created speech. They proved that current speech authentication
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could be fooled over 20% of the time by using trained speech synthesis systems,
and that pitch information was not useful in rejecting synthesized speech.
With generative models for handwriting appearing in the literature (e.g., [2,
6]), we seek to adapt this style of investigation to the handwriting verification
problem. We note that, as in [5, 8], we are not concerned with a user’s one-and-
only (i.e., legal) signature, but rather the idiosyncratic way the user writes an

arbitrary pre-selected passphrase of his/her own choosing.

3 Attack Models

To increase the amount of knowledge about the security provided by a given
biometric, a model of the operation of the system is needed. This model must
take into account all of the possible vulnerabilities of the system and provide
ways for testing those vulnerabilities. By allowing a finer grained comparison of
systems, individual components can be contrasted with one another. A system
with low FRR and FAR might not be as secure as one with higher error rates,
but a better-defined (more comprehensive and realistic) security model.

Because there are so many different kinds of information that could help
an attacker breach a system, an exhaustive taxonomy is beyond the scope of
this paper. We instead confine ourselves to exploring one line of attack, using
techniques that should be generalizable to other scenarios.

For the present study, the types of handwritten inputs we consider include:

Class 1. Different User, Different Passphrase. Sometimes referred to as a “naive
forgery.”

Class 2. Different User, True Passphrase. Different user writing the same pass-
phrase as the true user.

Class 3. True User, Different Passphrase. True user writing something other
than the passphrase.

Class 4. Concatenation Attack. Passphrase created from online samples of the
true user writing non-passphrase material.

Class 5. True User, True Passphrase. The keying material, provided as a base-
line for reference.

Certain of these input classes were chosen based on the types of attacks
usually reported in the biometric literature. Class 1 is the typical brute-force
type of attack while Class 2 is closer to a so-called “skilled forgery.” In testing
Class 3, we hope to show that even if the attacker has access to online samples
of the true user’s handwriting, more work must be done to use that information
to reduce the possible search space.

The representative generative model in the current test is Class 4 (we plan
to study other generative models in the near future). Here we employ samples of
the user’s handwriting collected separately from the passphrase. These samples
are manually segmented into basic units, which can be individual characters,
bigrams, trigrams, etc., and then labeled. The generative model accepts as input
a labeled inventory and the targeted passphrase and produces a random sequence
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of concatenated units that, when rendered, attempts to simulate the user writing
the passphrase. Note that both the appearance of the writing as well as the
dynamics are reproduced.

Lastly, Class 5 is provided as a baseline reference to contrast the other classes
to the intended input. In most biometric systems, some allowances must be made
to ensure that the true user is able to authenticate despite natural variations in
handwriting.

As was the case in [5], our primary interest in this work is in offline attacks,
a situation that might arise when the biometric is employed to generate a se-
cure hash or cryptographic key to be used in protecting confidential information
stored on a mobile device, for example. The handwritten input is provided to
the system which generates a set of features as output. The range of acceptable
inputs for the true user can be viewed as defining a subspace over the entire
feature space. Ignoring the unlikely event of an exact match on the first attempt
(a perfect forgery), the attacker’s goal, then, is to explore the space around the
feature vector returned by the forgery as rapidly as possible in the hopes of un-
covering the correct setting. We assume, of course, that the attacker has no way
of knowing whether the forgery is good enough to fall close to a true input until
the match is actually found, but once that happens, the attacker is able to tell
that the system has been broken. Hence, the attacker will conduct a methodical
search, working outwards from the feature vector for a certain period of time
before concluding that the forgery was not good enough and moving on to try
another input.

While the attack models we have presented are quite simple, they are suffi-
cient to motivate interesting tests of published biometrics, provide an indication
of the associated combinatorics, and illustrate the difficulty (or ease) with which
specific systems can be broken.

4 Experimental Evaluation

To examine the impact of the models described above, several example attacks
were created. For testing purposes, we chose to implement the Vielhauer, et al.
system [8] for biometric hashing. Based on a small data set, standard FRR and
FAR measures were used to determine appropriate parameter settings for our
later attempts at attacking the system. We then evaluated the effectiveness of
each of the classes of inputs described in the previous section,

4.1 Data Sets

For our experiments, several small data sets were created. Two writers (the
authors) wrote four different passphrases 20 or more times, which resulted in
a total of 154 samples. The handwriting was collected using a Wacom Intuos
digitizing tablet. While this data set is small in comparison to results typically
reported in the literature, it is still possible to draw conclusions due to the
specific nature of our study: we are not attempting to prove that a proposed
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biometric is secure, rather, we are trying to examine whether attacks based on
generative models can be successful. Since we are comparing the effectiveness of
attack strategies and not the overall security of a system, the size of the data set
is not a serious issue provided the phenomenon of interest, the breaking of the
system, is seen to occur'. Two examples from this data set are shown in Fig. 1.
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Fig. 1. Handwriting samples

As noted previously, to execute the concatenative attack (Class 4), it is as-
sumed that the attacker has access to online handwriting samples of the targeted
user as well as knowledge of the true passphrase. (It can also be assumed that
the attacker has an offline image of the user’s passphrase, but this was not used
in our current study.) A separate set of online writing samples were labeled as to
which stroke sequences corresponded to individual characters. This resulted in a
corpus of possible n-gram combinations of the user’s handwriting. To generate a
synthetic handwritten passphrase, strokes were concatenated from the corpus to
form the correct text of the passphrase. No scaling or smoothing was performed,
however the individual stroke sequences were placed on a similar baseline and
appropriate timestamps were recreated. An example of a passphrase synthesized
using this approach appears in Fig. 2(b).
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(a) Target passphrase. (b) Concatenative attack.

Fig. 2. Example of a concatenative attack

4.2 Biometric System

A detailed discussion of the Vielhauer, et al. biometric hash can be found in [3],
but some knowledge of the system will be helpful for a greater understanding of
the attacks discussed below. The system is based on 24 integer-valued features
extracted from an online writing signal. The signal consists of [z,y] position
and timing information. Fourteen of the features are global, while the remaining

L A good analogy here are studies on the susceptibility of traditional password security
systems to dictionary-based attacks. If a system with two passwords can be broken
in such fashion, then certainly systems with larger numbers of passwords are even
more susceptible. Nevertheless, we recognize the value of larger data sets and plan
additional collection activities in the near future
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ten features are concerned with segmented portions of the input obtained by
partitioning the bounding box surrounding the ink into five equal-sized regions
in the x- and y-dimensions. A listing of the features is provided in Table 1.

Table 1. Features employed in the Vielhauer, et al. biometric hash [§]

1. Number of strokes 13. Effective writing velocity in x

2. Total writing time (ms) 14. Effective writing velocity in y

3. Total number of samples (points) 15. Integrated area under x, segment 1
4. Sum of all local (x,y) minima and maxima 16. Integrated area under x, segment 2
5. Aspect ratio (x/y) * 100 17. Integrated area under x, segment 3
6. Pen-down / total writing time * 100 18. Integrated area under x, segment 4
7. Integrated area covered by x signal 19. Integrated area under x, segment 5
8. Integrated area covered by y signal 20. Integrated area under y, segment 1
9. Average writing velocity in x 21. Integrated area under y, segment 2
10. Average writing velocity in y 22. Integrated area under y, segment 3
11. Average writing acceleration in x 23. Integrated area under y, segment 4
12. Average writing acceleration in y 24. Integrated area under y, segment 5

To train the system to accept a given user, features are extracted and used
to create a biometric hash where each feature generates a corresponding integer
value. In addition, an interval matrix is created containing information needed
for future testing. This information could be stored by the system itself or by
the user in a portable format such as a USB key. A transitive enrollment system
may be employed and would help in achieving a strongly-correlated set of sample
data for the true user [7], but was not used for our experiments.

When a user attempts to authenticate, he/she provides a new handwriting
sample and a claim to a certain identity. Features are extracted from the sample
and passed through the hash generation. If a certain feature falls within the
accepted range of values (plus some tolerance threshold), it generates the same
integer hash. In our case, the size of the training set varied with the sample being
tested, but ranged between 15 to 25 samples per class. To generate FRR and FAR
curves for the system, the sample size for the training set cross-validation was
varied between 5 and 10. Several potential tolerance values were also checked:
0.0, 0.01, 0.05, 0.1, 0.15, 0.2, and 0.3. The most promising graph is shown in
Fig. 3, where the equal error rate tolerance threshold is found to be 0.15.
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Fig. 3. Error rates for the Vielhauer, et al. hash on data used in our tests
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As can be seen, the system performed quite well, with a FRR of 5%. In
addition, two FAR curves were generated. The first is a naive (Class 1) forgery,
with one writer writing a passphrase that was used to test against the other
writer writing a different passphrase. In this case, the FAR was 0%. In another
test, one writer writing a passphrase was tested against the other writer writing
the same passphrase (a Class 2 forgery). This case also resulted in a FAR of 0%.

To test how well each individual feature performed, a standard cross vali-
dation FAR test was run for all attack types. When a feature mismatch was
detected, a note was made as to which feature failed and by what magnitude.
This investigation showed that when a hash element is missed, the magnitude
of the miss is generally +2 of the actual value. It was also interesting to see
that several features yielded constant values for all of our handwriting samples.
This could mean that these hash elements, and by extension the features that
generated them, are not useful in the kinds of experiments we are performing.
However, we believe more research is needed before drawing such conclusions.

4.3 Feature Space Search

As noted in Sect. 3, the search we performed attempts to find the true hash
starting with the hash generated from the handwriting sample. The search begins
with small alterations of the given hash and works outward until a predetermined
time limit has been met. Our tests had a time limit of 60 seconds and were
conducted on a Pentium 4 desktop PC running at 3.2 GHz with 1 GB of RAM.
This machine was able to generate and check 540,000 search possibilities per
second.

Results for the five different input classes are shown in Figs. 4 and 5. The
first graph shows the min, mean, and max number of feature misses per sample,
while the second graph shows how long it took the search process to correct the
initial hash vector (when that was possible within the 60 second time limit).

It can be seen in Fig. 4 that the features used by the Vielhauer, et al. hash
have several desirable qualities. Class 2 (Different User, Same Passphrase) and
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Fig. 4. Incorrect hash elements per input class
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Fig. 5. Time to correct hashes per input class (with percent accepted)

Class 3 (Same User, Different Passphrase) have very similar means (18.6 vs. 20.1)
and their maximum and minimum values are also comparable. This shows that
some features of the biometric system are sensitive to the passphrase written,
which accounts for the errors for Class 3, and some features are sensitive to the
writer, which accounts for the errors seen in Class 2.

The mean incorrect number of hash elements for Class 1 is 21, which is higher
than for all other classes, as would be expected. It is also of note that none of
the Class 1, 2 or 3 hashes were broken in the 60 second search limit. While
60 seconds seems like a low bound, the number of possibilities for the search
increases exponentially based on the number of incorrect hash elements. Still,
more efficient search algorithms, faster machines, and longer runtimes could
have an effect on the probability of the search finding the correct hash. As
would be expected, Class 5 (keying material) was either accepted without any
modifications or only required a maximum search time of 0.00019 seconds.

The concatenative attack, Class 4, displayed interesting behavior. Class 4 had
the highest variance ranging from 0 to 16 hash elements incorrect, while none of
the other classes had a range over 7. However, even with this distribution, the
mean number of hash elements incorrect was still only 5.92, which put it below
Classes 1, 2 and 3. The high variance means that many of the concatenated
passphrases generated hashes with few to no hash elements incorrect. We note
that 5% of Class 4 hashes were correct at the onset and required no search. When
the standard 60 second search was allowed, 49% of the hashes were correctable,
with an average search time of 5.28 seconds on those that were broken. Class 4
was the only class outside of the keying material (Class 5) that was able to
generate hashes that required no search.

5 Conclusions

Popular measures for evaluating the performance of biometric systems may fail
to capture certain kinds of threats. By limiting testing to human subjects and
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Fig. 6. Percentage of handwritten passphrases in each class accepted after search

reporting only results for FRR and FAR, the determined attacker is ignored. As
more and more sensitive information is stored on portable computing devices,
the incentives for breaking such systems becomes greater.

The attack models we have begun to study will help increase our under-
standing of potential flaws in biometric security, hopefully before they can be
exploited. As can be seen in Fig. 6, we were able to achieve a 49% success rate
using the concatenative attack described in this paper against a scheme for cre-
ating biometric hashes from online handwriting dataZ.

The concatenative attack we have presented is only one possible avenue an
adversary might take, as outlined in Sect. 3. We plan to study other forms of at-
tack, including Plamondon’s delta-log normal generative model [6] and Guyon’s
handwriting synthesis method [2]. These techniques will allow a full parameteri-
zation of the search space and may prove even more devastating. Other schemes
for attempting to create secure hashes from a user’s handwriting should likewise
be evaluated in this fashion.

Testing with larger, more extensive data sets is also planned. By using tablet
PC’s and commercial signature capture tablets, we hope to better approximate
a true distribution of users. These larger data sets will allow a more thorough
examination of the feature space as well as the differences between handwritten
passphrases and traditional “legal” signatures. Studying these issues in the con-
text of other biometric measures, including speech, to build on the work that
was first reported in [5], is another topic for future research.
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