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ABSTRACT

This paper describes security of speaker verification sys-
tems against imposture using synthetic speech. We pro-
pose a text-prompted speaker verification technique which
utilizes pitch information in addition to spectral informa-
tion, and investigate whether synthetic speech is rejected.
Experimental results show that pitch information is not
necessarily useful for rejection of synthetic speech, and it
is required to develop techniques to discriminate synthetic
speech from natural speech.

1. INTRODUCTION

For speaker verification systems, security against impos-
ture is one of the most important problems, and many ap-
proaches to reducing false acceptance rates for impostors
as well as false rejection rates for clients have been inves-
tigated. For example, text-prompted speaker verification
techniques [1] are robust to the impostor with playing back
recorded voice of a registered speaker. However, imposture
using synthetic speech has barely been taken into account
due to the facts that quality of the synthetic speech was
not enough, and that it was difficult to synthesize speech
with arbitrary voice characteristics.

Meanwhile, recent advances in speech synthesis make it
possible to synthesize speech of good quality. We have also
proposed an HMM-based speech synthesis system [2],[3]
which can synthesize smooth and natural sounding speech.
Moreover, we have shown that we can change voice char-
acteristics of synthetic speech to resemble target speaker’s
voice characteristics by applying speaker adaptation tech-
niques using a small amount of adaptation data [4]. From
these points of view, we presented preliminary experimen-
tal results on imposture against speaker verification sys-
tems using the HMM-based speech synthesis system [5].
In [5], we used an HMM-based text-prompted speaker ver-
ification system as a reference system, and showed that
false acceptance rates for synthetic speech reached over
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70% by training the synthesis system using only one sen-
tence from each customer, while a false acceptance rate
for human impostors was 0%. However, the experimen-
tal conditions were not necessarily realistic. For example,
synthetic speech was generated using white noise excitation
without pitch information.

In this paper, to reject speech synthesized without pitch,
we utilize pitch information for speaker verification. Pitch
patterns and spectral parameters can be modeled simul-
taneously by multi-space probability distribution HMM
(MSD-HMM) [6]. Based on the MSD-HMM, we construct
a text-prompted speaker verification system. To model
variations of pitch patterns accurately, contextual factors,
such as phoneme identity factors or stress-related factors,
are taken into account. Then, we investigate whether the
speaker verification system can reject synthetic speech from
the HMM-based speech synthesis system which is trained
using speech data from customers of the speaker verifica-
tion system.

This paper is organized as follows. In Section 2, a text-
prompted speaker verification system based on MSD-HMM
is explained briefly. The experimental conditions and re-
sults are shown in Section 3 and 4, and the conclusion is
given in Section 5.

2. TEXT-PROMPTED SPEAKER
VERIFICATION BASED ON
SPECTRUM AND PITCH

The observation sequence of pitch pattern consists of one-
dimensional continuous values and discrete symbol which
represents “unvoiced”. The main problem of pitch pattern
modeling is how to model these observations which have
quite different properties. Several approaches have been
proposed to utilize pitch information for (text-independent)
speaker recognition. For example, in [7] and [8], the score
for pitch part is calculated from pitch values within voiced
regions and combined with the score for spectral part, and
in [9] and [10], two speaker models, which corresponds to
voiced and unvoiced regions respectively, are constructed
for each speaker. In this paper, we adopt an alternative ap-
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Figure 1: Observation vector.

proach in which pitch observation sequences are modeled
by the multi-space probability distribution HMM (MSD-
HMM).

MSD-HMM can model pitch observations strictly without
any heuristic assumptions, and a reestimation algorithm
for MSD-HMM is derived in [6]. Therefore, we can ap-
ply MSD-HMM to traditional HMM-based text-prompted
speaker verification directly. MSD-HMM can model vari-
ations of pitch observations accurately by taking account
of linguistic contexts as well as phonetic contexts, and a
decision-tree based context clustering technique [11] is ex-
tended for MSD-HMM [12] which enables to balance model
complexity against data availability.

2.1. Modeling Pitch Observations Using
MSD-HMM

We assume that pitch pattern is a sequence of outputs
from a one-dimensional space Ω1 and a zero-dimensional
space Ω2 which correspond to voiced and unvoiced regions,
respectively. Each space Ωg has its probability wg, i.e.,
probability for voiced observation w1 and for unvoiced ob-
servation w2, where

∑2

g=1
wg = 1. The space Ω1 has a

one-dimensional probability density function N1(x) where∫
Ω1

N1(x)dx = 1, and Ω2 has only one sample point. A

pitch observation o consists of a continuous random vari-
able x and a set of spaces indices X, that is,

o = (X,x), (1)

where X = {1} for voiced region and X = {2} for unvoiced
region. The observation probability of o is defined by

b(o) =
∑
g∈X

wgNg(x). (2)

It is noted that, although N2(x) does not exist for Ω2, we
define as N2(x) ≡ 1 for simplicity of notation.

Here we consider an HMM whose output probability in
each state is given by equation (2). We call this type
of HMM MSD-HMM. Using MSD-HMM, We can model
voiced and unvoiced observations of pitch in a unified model
without any heuristic assumption. Moreover, we can model
spectrum and pitch simultaneously using multi-stream MSD-
HMM, in which spectral part is modeled by continuous
probability distribution, and pitch part is modeled by MSD
(Figure 1).
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Figure 2: Blockdiagram of a speaker verification system
based on MSD-HMM.

2.2. Text-prompted Speaker Verifica-
tion Based on MSD-HMM

A blockdiagram of a text-prompted speaker verification
system based on MSD-HMM is shown in Figure 2. In
the training stage, a set of phoneme models is trained for
each customer. To model variations of pitch patterns ac-
curately, phonetic and linguistic contexts are taken into
account, and a decision-tree based context clustering tech-
nique is applied to the context dependent models. A set of
speaker and context independent phoneme models is also
trained using all the customers’ training data.

In the verification stage, mel-cepstral coefficients and a log-
arithm of the fundamental frequency are extracted, and
their delta parameters are calculated. Then, normalized
log-likelihood of input parameter sequenceO for the claimant
speaker s is calculated as follows,

Ls(O) =
1

T

{
log P (O|w, λs) − max

v∈W
log P (O|v, λSI)

}
,

(3)
where T is the total number of frames of input speech, w
is the label sequence corresponding to the key text pre-
sented to the speaker, λs is a set of phoneme models of
the claimant speaker, W is a set of possible label sequence,
λSI is a set of speaker independent phoneme models, re-
spectively.

3. EXPERIMENTAL CONDITIONS

We used phonetically balanced Japanese sentences from
ATR Japanese speech database. The database consists
of sentence data uttered by ten speakers (six male speak-
ers and four female speakers). All the speakers were used
as customers. Customers except for the claimant speaker
were also used as human impostors. Speech signals were
sampled at 16kHz, and labeled into context dependent
phoneme labels based on phoneme labels and linguistic in-
formation included in the database. We used 42 phonemes
including silence and pause. The details of contextual fac-
tors are shown in [3]. Both the speech synthesis system
and the speaker verification system used the same label se-
quences. We used 3-state left-to-right models with single
diagonal Gaussian output distributions (for spectral part)
for both the speech synthesis and the speaker verification
systems.
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(b) Speaker verification: CD, Speech Synthesis: CI
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(c) Speaker verification: CD, Speech Synthesis: CD

FAR(H): FAR for human impostor
FAR(N): FAR for speech synthesized without pitch
FAR(P): FAR for speech synthesized with pitch

Figure 3: False rejection and acceptance rates as func-
tions of the values of the decision threshold.

For the speaker verification system, 100 sentences were
used to train a set of phoneme models of each speaker.
Speech signals were windowed by a 25 ms Blackman win-
dow with a 5 ms shift, and the cepstral coefficients were
calculated by 20-th order LPC analysis. Pitch values were
obtained using ESPS get f0 program [13]. The feature vec-
tor consisted of 20 cepstral coefficients including 0-th co-
efficient, a logarithm of the fundamental frequency, and
their delta parameters. Delta pitch parameters were cal-
culated only within voiced regions, and the frames, where
delta pitch parameters were not computable because of the
boundaries of voiced and unvoiced regions, were treated as
unvoiced. Both context independent (CI) and context de-
pendent (CD) models were trained for each speaker. Speaker
independent CI models were also trained. In the verifica-
tion stage, likelihood in equation (3) is calculated on the
Viterbi path.

The speech synthesis system were trained using 50 sen-

Table 1: Equal error rates (speech synthesis system were
trained using 50 sentences).

speaker verification

w/o pitch with pitch

CI CD CI CD

human impostor 0.2 0.9 0.1 1.8

CI 82.0 37.8 36.0 13.4

synthetic
w/o pitch

CD 71.4 53.8 29.6 17.4

speech CI 84.8 40.4 87.0 32.0
with pitch

CD 77.6 54.6 76.4 55.6

tences for each customer. These sentences did not over-
lap to the training data of the speaker verification system.
Speech signals were windowed by a 25 ms Blackman win-
dow with a 5 ms shift, and the mel-cepstral coefficients were
calculated by 24-th order mel-cepstral analysis [14]. Pitch
values were obtained using get f0 program. The feature
vector consisted of 24 mel-cepstral coefficients including
0-th coefficient, logarithm of fundamental frequency, and
their deltas. As well as the speaker verification system,
both CI and CD models were trained for each speaker. As
the test data, 50 sentences were synthesized from both CI
and CD models, and both with and without pitch. These
sentences did not overlap to the training data.

4. RESULTS

Figure 3 shows false rejection rates (FRRs) for customers
and false acceptance rates (FARs) for human impostors
and synthetic speech trained using 50 sentences as func-
tions of the values of the decision threshold, and Table 1
shows the equal error rates (EERs). Figure 3 (a) shows the
results where both the speaker verification and the speech
synthesis systems used CI models, (b) shows the results
where the speaker verification system used CD models, and
(c) shows the results where the speech synthesis systems
also used CD models.

EERs for synthetic speech generated using white noise ex-
citation (without pitch) were reduced significantly by uti-
lizing pitch information for speaker verification, however,
EERs were considerably higher than human impostors, and
reached over 10%. This could be attributed to higher like-
lihood for spectral part, i.e., the total likelihood is still high
because of higher likelihood for spectral part, even though
likelihood for pitch part is low. Furthermore, from the fact
that EERs for speech synthesized with pitch reached over
30%, pitch information is hardly useful for speaker verifi-
cation to reject synthetic speech with pitch. One of the
reasons could be that the same pitch modeling technique
as the speech synthesis system was used in the speaker
verification system.

From the fact that EERs were reduced by using CD mod-
els in the speaker verification system, it could be consid-
ered that taking account of linguistic context is useful for
speaker verification as well as for speech recognition. How-



Table 2: Equal error rates for synthetic speech with less
training data.

synthetic speech speaker verification

No. of training w/o pitch with pitch

sentences
Excitation

CI CD CI CD

w/o pitch 49.0 32.6 14.8 11.4
10 sentences

with pitch 64.0 33.6 52.2 29.8

w/o pitch 30.6 22.6 11.8 11.0
5 sentences

with pitch 36.8 22.4 29.8 20.0

w/o pitch 24.2 15.8 5.8 8.8
3 sentences

with pitch 24.6 15.2 19.0 11.8

ever, from Figure 3 (c), it can be seen that distributions of
likelihood for customers and synthetic speech with pitch is
overlapping, and EERs for synthetic speech from CD mod-
els with pitch are reached over 50%. From these results,
using CD models for speaker verification is insufficient to
reject synthetic speech.

Table 2 shows the EERs for synthetic speech with less
training data. In these cases, we used CD models for speech
synthesis. From Table 2, it can be seen that EERs for syn-
thetic speech were more than 20% even though the HMM-
based speech synthesis system was trained using only five
sentences.

These experiments might be slightly biased against the
speaker verification system. For example, both the speaker
verification system and the speech synthesis system adopted
the same approach to modeling pitch patterns, the dis-
tribution of spectral parameter was modeled by only one
Gaussian distribution in each state, and many experimen-
tal conditions were identical between the speaker verifica-
tion system and the speech synthesis system. However, the
EERs for synthetic speech were considerably higher than
those for impostors’ speech. These results suggest that ad-
justment of decision threshold will not be able to reject
synthetic speech effectively without significant increase of
FRRs for customers, and some techniques to discriminate
synthetic speech from natural speech are required.

5. CONCLUSION

In this paper, we have proposed a speaker verification tech-
nique which utilizes pitch information, and have investi-
gated whether the speaker verification system can reject
synthetic speech. The experiments might be slightly biased
against the speaker verification system. However, from the
facts that the false acceptance rates for synthetic speech
with pitch reached over 20% by training the speech syn-
thesis system using only five sentences for each speaker,
current security of HMM-based speaker verification sys-
tems against synthetic speech is inadequate even though
these disadvantages are taken into account.

To put speaker verification systems into practice, it is re-
quired to develop techniques to discriminate synthetic speech

from natural speech. Investigation in another conditions
such as speaker verification systems with different frame-
works, and investigation on stand-alone speaker verifica-
tion systems are also our future works.
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