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This paper is a follow up to an article published in 1989 by R. Plamondon and
G. Lorette on the state of the art in automatic signature verification and writer
identification. It summarizes the activity from year 1989 to 1993 in automatic signa-
ture verification. For this purpose, we report on the different projects dealing with
dynamic, static and neural network approaches. In each section, a brief description
of the major investigations is given. ’
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technique, neural networks. .

1. INTRODUCTION

Research is very actively under way in the signature verification domain. In their
indepth article on this subject published in 1989,”2 R. Plamondon and G. Lorette
reflect this high level of activity in their description of the numerous verifica-
tion methods available and by classifying the strengths and weaknesses of these
techniques.

A great deal has been done in the domain since this article was published. Re-
searchers have applied new technologies, such as neural networks and parallel pro-
cessing, to the problem of signature verification and they are continually introducing
new ideas, concepts and algorithms. Signature verification is a real challenge for
researchers because of the many difficulties that can arise during the process of
creating such a system.5®7>7 Two approaches are used in signature verification,
one based on the static image of the signature (the result of the action of sign-
ing) and the other on the dynamic processes involved (the action of signing itself).
The static approach has always been considered more problematic because the re-
sults obtained, in terms of type I and type II errors, are not as good as those
obtained using the dynamic approach.51:7%7% However the dynamic approach, too,
poses numerous difficulties.’ In this introductory paper, we propose to provide a
comprehensive overview of the work that has been carried out since Ref. 72 ap-
peared in 1989. This overview is presented in three sections: the first summarizes
recent activity in static signature verification, the second describes developments
in dynamic signature verification, both by conventional symbolic methods, and the
third is devoted to verification by neural networks, whatever the approach, whether

static or dynamic.
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644 FRANCK LECLERC & REJEAN PLAMONDON

2. STATIC SIGNATURE VERIFICATION

As stated previously, static signature verification has always been considered by
researchers to be the more difficult approach and to give worse results than dynamic
signature verification.

Since 1989, M. Ammar?~® and M. Ammar, Y. Yoshida and T. Fukumura®” have
continued their work and have been quite active in this domain. In Ref. 5, for
example, M. Ammar introduces a new technique for static signature verification
which he calls AMT (Ammar Matching Technique). His approach is based on
knowledge drawn from reference signature images, and on AMT, which enables
similarity measurement. With this technique, M. Ammar reports elimination of
skilled forgeries with a very low rate of false rejections, and with a mean error
of 2% using a database of 200 genuine signatures from 20 writers and 200 skilled
forgeries from 20 forgers.

The research of J. C. Pan and S. Lee?®5! centers on representing the signa-
ture image. Using base heuristics, the authors represent a signature as a series of
elements that simulate the process of generating a handwritten stroke by a human.

In a similar vein, as part of a long-term project aimed at creating a complete
automated handwritten signature verification system, R. Sabourin, M. Cheriet and
G. Genest3® are evaluating a shade-coding method to eliminate random forgeries.
In the same context, R. Sabourin and R. Plamondon®® are defining and evaluating
a number of relational similarity measures taken between relational vectors repre-
senting spatial distances between the reference profile and pairs of test primitives.
In static signature verification, it is difficult to eliminate forgeries created by trac-
ing or by photocopying. In four articles by the same group,®!:#637%° a solution is
proposed for this problem based on grey-level comparison.

Dynamic programming is a technique that is widely used in dynamic signature
verification to compare functions, such as the variation of a measure over time
(pressure, speed, acceleration, etc.). This technique is also used in static signature
verification. In Refs. 60, 80, for example, F. Nouboud and M. J. Revillet apply
dynamic programming to the envelope of the signature image, and V. A. Shapiro™
uses it in conjunction with an idea inspired by the field of tomography. In this
project, Shapiro uses the projections under various different angles of the signature
image, on the basis that the signature image can be retrieved from these projections.

Based on the fact that the properties of curvature, total length and slant an-
gle of a signature are constant among different samples, T. S. Wilkinson and
J. W. Goodman®® propose the use of slope histograms to detect forgeries. With a
database of 500 true signatures and 306 simple forgeries, the authors obtained an
equal error rate of 7% (type 1 and H).

D. Randolph and G. Krishnan,” emulating techniques employed by signature
verification experts, have developed a system with heuristics that learns to recognize
signatures by accepting 92.5% of genuine signatures (7.5 type I error rate) and by
rejecting 94.5% of forgeries (5.5% type Il error rate). These rates are evaluated
with a database of 120 true signatures and 36 simple imitations (imitations realized
without examining the genuine signatures).
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Finally, G. Krishnan and D. Jones*® have introduced an algorithm to detect
tracing forgeries by suggesting that the ink dispersion along the pen tip trace of
someone who is forging by tracing is different from that of someone signing naturally.
In designing their system, the authors use the gradient of the edges of the signature,
because this gradient is significantly different in an original signature from that in
a signature forged by tracing. For the test, the authors use 120 signatures from
twelve subjects and fifteen different forgers who produce 7 tracing imitations for
the twelve subjects. The rejection rates obtained in this way for tracing forgeries
are in the neighborhood of 85%. Others works with gradient are also reported in
the article.3®

Thus it is clear that since research in 1989 static signature verification contin-
ues to be of great interest to the scientific community, especially considering the
enormous financial impact of the automated verification of cheque signatures and
signatures on official documents. '

3. DYNAMIC SIGNATURE VERIFICATION

A signature verification system is designed in a number of stages, as follows: acqui-
sition, preéprocessing, comparison and evaluation. The acquisition process is very
important because the quality of the signals is critical to optimizing the comparison
process. Also, if the signals are of good quality, then the execution time associated
with preprocessing is minimized, since the role of preprocessing is sometimes to cor-
rect faults in the acquisition system. In dynamic signature verification, the choice of
signals that can be processed is fairly large (the £ and y coordinates of a pen tip asa
function of time, speed, acceleration, pressure, etc.). That is why some researchers
focus on this problem in particular and propose data processing equipment designed
exclusively for the acquisition step. R. Baron and R. Plamondon, for example, have
evaluated an instrumented pen to measure acceleration.® Similarly, P. de Bruyné
and R. Korolnik have developed hardware, which is presented in Ref. 24, to mea-
sure static and dynamic calligraphic characteristics. Finally, in Ref. 93, H. Taguchi,
K. Kiriyama, E. Tanaka, and K. Fujii propose an instrumented pen capable of mea-
suring the angle of the pen and the force exerted on it, which they are testing for
use in a signature verification system. Although there is no consensus on the ideal
acquisition tool for signature verification, the hardware currently available on the
market—the digitizer—is without question the most widely used, 253345 and can
be modified as required.®?

Many signals can be used in a signature verification system, the question is,
which one do we choose? R. Plamondon and M. Parizeau compare the different
types of signals in Ref. 77: the horizontal and vertical positions, the horizontal and
vertical speeds and the horizontal and vertical accelerations. In this study, it was
shown that the vertical signals are the most discriminating and that speed is the
best representation for a 2D signature. Similarly, we may ask which combination of
handwritten strokes (handwritten word, initial or signature) is the best one to use?
In Ref. 62, M. Parizeau and R. Plamondon conclude that the signature is the best
way of identifying an individual.
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As in static signature verification, there are many ways to approach the problem
of creating a dynamic signature verification system. This great diversity is reflected
in the R. Plamondon and G. Lorette articles 51, 72-74, 76 and in this post-1989 up-
date. One way of approaching the problem is to use a model as a base, for example
to describe the signature?® or to describe the process of generating a handwrit-
ten stroke. In the research of F. Leclerc® and F. Leclerc and R. Plamondon,*”
the validity of a model of the process of generating handwritten strokes was veri-
fied on signatures. More recently, a comparison of various models carried out by
R. Plamondon, A. Alimi, P. Yergeau and F. Leclerc™ and the work of A. Alimi
and R. Plamondon’ have enabled the model to evolve, which led R. Plamondon to
develop the delta lognormal law for the generation of rapid movements.58:67:6%70 Fi-
nally, a knowledge of the handwriting generation process facilitates decision-making
in the design of a signature verification system.®®

Another way to approach the problem is to analyze the signature to deter-
mine which points are perceptually important in the segmentation process.11
Segmentation is an important step in the realization of a signature verification
system,’3’21’7”’3""’9'59'66'78 so important in fact that it may warrant special consid-
eration. G. Dimauro, S. Impedovo and G. Pirlo,? for example, segment a signature
to be verified by matching it with the reference signatures so that only an optimal
set of segmentation points is retained. With this type of segmentation, it 1s then
possible to perform local comparisons rather than global ones. This results in a
reduction in processing time and provides the opportunity to retrieve local infor-
mation that may be fundamental for accurate verification of the signature. This
segmentation may also be carried out using the knowledge of a model*®%¢ or by
means of neural networks (M. Lalonde and J. J. Brault*?).

Whether segmented or not, the test signature must then be compared with the
reference signature(s). There are many comparison algorithms currently available.
A comparative study of three comparison techniques that are very widely used in
signature verification (regional correlation, elastic matching and tree matching) has
not shown the superiority of any one of them. The choice of technique depends on
criteria like processing time, the signals used and the sensitivity of the adjustable
parameters of the technique.5® The problem is that the algorithms proposed for sig-
nature verification are often complex and frequently involve a great deal of repetitive
calculation. This often requires very considerable processing time and may be cum-
bersome for on-line systems. For this reason, it would be of significant benefit to
jimplement these algorithms in parallel. To explore this possibility, P. Fréchette
and R. Plamondon®? designed a parallel card based on the TMS820C30 digital pro-
cessor and have compared the performances of two signal comparison algorithms:
regional correlation and dynamic programming. M. C. Fairhurst, P. S. Brittan and
K. D. Cowley®®®! have also suggested that the parallel approach is sometimes
\navoidable—for example, to optimize a characteristic vector on a reference popu-

lation of signers.
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Even if very good comparison algorithms are available, the verification system
sometimes reveals weaknesses with respect to particular signers who have an un-
stable signature that may be easy to forge. As a means of evaluating the quality
of a signer’s signature, J. J. Brault!” and J. J. Brault and R. Plamondon!#141%
have proposed an index to measure the complexity inherent in imitating a
signature.

In order to avoid time-consuming processing, some researchers propose a multi-
level approach, the object of which is to rapidly eliminate gross forgeries by following
simple processing steps.?8:5%78 This is particularly efficient when using the function
approach (which is costly in terms of calculation time) in conjunction with the
parameter approach.”®

Although some avenues of action have become established in signature verifi-
cation, there are many left to explore. In Ref. 59, for example, W. Nelson and
E. Kishon investigate the possibility of creating a signature verification system
based on a digitizer that produces the z, y coordinates of the pen tip and the
pressure exerted on the pen tip simultaneously. This system rapidly eliminates
gross forgeries, segments the signatures and uses dynamic programming to perform
elastic rematching. In this study, the authors investigate the validity of their choice
and their approach. If you are interested by previous work using pressure, force or
derivative pressure you are referred to the following articles in Refs. 22, 23, 29, 35,
37, 38, 40, 50, 55, 90, 92, 96, 98, 101. .

Researchers usually use the type I and type Il error rates to evaluate verification
systems. The type Il error rate is very important because it expresses the percentage
of counterfeit signatures (forgeries) that have been accepted. Minimizing this rate
often involves an increase in the number of type I errors (rejections of a genuine
signature), however. The system devised by H. Taguchi, K. Kiriyama, E. Tanaka
and K. Fujii,®3 which is based on a commercial digitizer and a specially designed
pen, has achieved a 6.7% type I error rate and a 0% type 1I error rate using a
database of 105 genuines and 105 forgeries. In testing the validity of using spectral
analysis in conjunction with discriminant analysis to build a signature verification
system, C. F. Lam and D. Karnins*® have achieved a 0% type I error rate for
2.5% type II errors with 8 genuine signatures and 152 forgeries produced by one
signer and 19 forgers. Like C. F. Lam and D. Karnins,* K. Dar and A. Kunz?
have previously explored the possibility of representing signatures in the frequency
domain by considering the coordinates = and y as the real and imaginary part of
a complex number. In the same vein, S. Impedovo, M. Castellano, G. Pirlo, and
G. Dimauro?? use spectral analysis of strokes with a structured knowledge database
to verify signatures. In the first atterpt, a knowledge database was built with 1000
true signatures from one writer. Tests were conducted with 232 genuine signatures
and 434 forgeries. They obtained 3.5% type I error rate and 4.2% type Il error rate.
More recently, G. Gazzolo and L. Bruzzone® have proposed a methodology for
identifying signers based on geometric, dynamic and graphological characteristics

in generating a reference vector.
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Researchers have also applied new techniques inspired from speech recognition
to signature verification. L. Yang, B. K. Widjaja, and R. Prased®” have used with
success hidden Markov models. For a first attempt with 496 signatures from 31
subjects, the authors obtained 4.44% type I and 1.79% type 11 error rates using
random forgeries. In the same way, N. Mohankrishnan, M. J. Paulik and M. Khalil®®
have applied a nonstationary autoregressive model for signature verification. On a
database of 928 signatures (58 signatures from 16 writers), they have obtained an
equal error rate of approximately 8%, using random forgeries.

A great deal of work is currently being done in the development of software,
but little on hardware, although some researchers are developing more substantial
hardware designs. For example, with an instrumented pen and a design for a ded-
icated microprocessor-based system that extracts the dynamic characteristics of a
signature, D. P. Mital and K. T. Lau®® have obtained a 2% type I error rate and a
5% type 11 error rate (the size of the database is unknown).

Finally, with a two-level strategy that aims at the rapid elimination of gross
forgeries and the accurate verification of skilled forgeries, Dimauro et al.*® have
proposed signature segmentation tests based on reference signatures with a view to
performing a local rather than a global comparison through elastic matching. In
this way, the authors obtain type 1 and type II error rates of less than 4% on 15
signatures.

In signature verification, as in many shape recognition domains, it is very difficult
to compare the results of different systems. Even if researchers express system
performance in terms of type I and type 11 error rates (which unfortunately is not
always the case!), these rates are measured under very different conditions (number
of signers, types of signatures, types of forgeries used, etc.), and comparison is
therefore very difficult. One way this can be done is to compare different systems by
taking two of the systems available on the market and testing them under the same
conditions, as S. F. Mjglsnes and G. Sgberg®” have done. It would be a laborious
task to test twenty or so systems (cost of operation, mobilization of equipment
and personnel, etc.), but would certainly be feasible, and very useful in making a
final decision among two or three prototypes. Another approach is to use a public-
domain database, as I. Yoshimura®® and M. Yoshimura!®® have done and determine
the error rates on this group of signatures. For example, with a dissimilarity measure
incorporating the direction of pen movements, these authors obtained error rates of
as little as 1% with the CADIX database.

This has been a brief survey of recent activity in dynamic signature verification.
In the next section, we examine a new direction in the signature verification domain,
the application of the neural network technique.

4. NEURAL NETWORKS

One of the greatest advances in signature verification since the 1989 article is
the increasingly frequent use of neural networks. Neural networks have found
their way into identity verification systems®® and are now used in signature
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segmentation,*® static signature verification®17-19:53.8284 and dynamic signature
veriﬁcation.‘6'20'25'34'41'54

The advantages of neural networks are that they can be trained to recognize
signatures and their characteristics are such that they could be used to classify
signatures as genuine or forged as a function of time through a retraining process
based on recent signatures. Their primary disadvantage is often the large number

of specimens required to ensure that the network does in fact learn.

4.1. Dynamic Signature Verification using Neural Networks

Table 1 shows the dynamic signature verification results of four systems. These
results are derived from the use of various strategies and several types of neural
networks. J. Higashino,*! for example, uses a four-layer network in his signature
verification system, with two (2) hidden layers and an output neural. The output
neural yields a measure of the degree of signature similarity. The training of the
neural network is achieved through backpropagation of the error, calculated from
pressure and speed signals. )

For a signature verification system to learn to distinguish between genuine
signatures and forgeries, samples of two types of signatures must be provided.
Forged signatures are difficult to obtain and it is hard to define a class of forg-
ers, which is why Higashino?! uses genuine signatures that have been deformed
instead. The author also uses what is known as the function approach. The neural
networks are trained to recognize pressure, horizontal speed and vertical speed as a
function of time. The signals of these parameters are then resampled so that only
956 points remain. P. Gentric and J. Minot34%4 and H. D. Chang, J. F. Wang and
H. M. Suen,?° on the other hand, use the parameter approach. Thus, P. Gentric and
J. Minot use the signals z(t), y(t) and p(t) (the coordinates and pressure obtained
by a special sensor) and elastic matching combined with dynamic programming to
define four measures: mean pressure distortion, written shape distortion, dynamic
difference and the ratio of signature durations. These measures are taken from N
identical signatures that are considered in pairs. These signatures are then used
to train the network, which has been specially designed for their application. In
Ref. 25, E. Desjardin, A. C. Doux and M. Milgram use the speed module (curvi-
linear speed) to identify signers with a diabolo network normally used for signal
compression.

Like K. P. Zimmermann and M. J. Varady,'°! L. Y. Tseng, and T. H. Huang®
have decided to use one bit quantized pressure, but this time with a neural network.
The aim of their works is to screen gross forgeries. Results are quite similar to those
of Zimmermann and Varady; they are not really good as compared with dynamic
verification systerns.

Syntactic recognition is popular in handwritten applications and pattern recog-
nition. For some aspects handwritten recognition and signature verification are
similar. Thus, S. M. Lucas and R. L. Damper®? use a syntactic neural network that
can infer a grammar. Their alphabet is composed of eight directions plus a nul
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vector for no movement. In the learning mode, the neural network builds the gram-
mar. In test mode, the network acts like a parser that verifies the test signatures.

Finally, J. Bromley, J. W. Bentz, L. Botton, 1. Guyon, L. Jackel, Y. Le Cun,
C. Moore, E. Sackinger, and R. Shah!® introduced a “siamese” neural network for
a signature verification system that incorporates some constraints. For this system,
the authors tested various combinations of characteristics (a total of eight (8) based
on speed, acceleration, the direction of the tangent relative to the trajectory, etc.).
These results are not included in Table 1 because the system did not comply with
one of the constraints, which was to achieve a 99.5% acceptance rate of genuine
signatures for an 80% detection rate of forgeries.

In Ref. 54, J. Minot and P. Gentric raise the problem of modeling “realistic forg-
eries”, in other words, how to devise good forgeries for training neural networks.
Unlike J. Higashino,*! J. Minot and P. Gentric did not want to create forgeries arti-
ficially. Instead, they designed a neural network adapted to the monoclass problem.
This network estimates the similarity of different signatures and is connected to a
decision network, a perceptron with a hidden layer, which is trained by backpropa-
gation of the error gradient. H. D. Chang et al.2® also use the parameter approach
by extracting 15 measures based on the position signal, but in this case using a
bayesian neural network. The network is trained with genuine signatures. Dur-
ing the verification process, the vector of the signature characteristics is evaluated
to check whether or not the signature corresponds sufficiently well to the learned
specimens. The neural network then acts as a bayesian classifier.

This has been a summary of recent activity in dynamic signature verification
using neural networks. In the next section, we discuss the use of this new technique
in static signature verification.

4.2. Static Signature Verification using Neural Networks

In addition to using neural networks for dynamic signature verification, researchers
have also used these networks for static signature verification. Table 2 shows the
static signature verification results of four systems. R. Sabourin and J. P. Drouhard
in Ref. 84, for example, use neural networks to classify signature images, with the
probability density function of the stroke directions serving as a global characteris-
tics vector. The authors use this approach to rapidly eliminate gross forgeries, such
as random forgeries. The network described in this article is a propagation classifier
network used prior to and with backpropagation for the training process. During
training, the authors use genuine signatures and random forgeries. In other work,
R. Sabourin®? has evaluated a Kohonen LVQ-type classifier. The results obtained
are close to those of a conventional classifier of the type “k nearest neighbors with
vote”.

H. Cardot, M. Revenu, B. Victorri, and M. J. Revillet!71819 4150 use neural
networks to elirninate gross forgeries. For this they chose a global approach for
which they use geometric parameters (mean stroke direction, moments of inertia,
size of the signature) and the envelope of the signature.
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In another article, S. Barua® explores the possibility of using neural networks
to identify individuals in the context of protecting information systems. In his
study, S. Barua uses a multilayer perceptron with one hidden layer. The signature
is presented in a 5 x 35 binary image. The recognition rates of the models were
between 90% and 95%. The author does not provide much detail on these results
because his article was a feasibility study and the signals used were not from genuine
signatures but from quite unrealistic models.

D. A. Mighell, T. S. Wilkinson, and J. W. Goodman®® approached the problem
of rapidly eliminating gross forgeries by using a neural network that learns through
backpropagation. Once again, the authors had to confront the problem of using
forgers to enhance the performances of their system. If no forgers are revealed
during the training phase, then the network will recognize all the signatures as
genuine during the test phase. The solution proposed by the authors is to use
computer-generated forgeries. The results of their study are summarized in Table 2.

Generally speaking, neural networks obtain results comparable to those presented
in the 1989 article. The great advantage of neural networks is that they are capable
of learning to perform class separation. The principal difficulty raised by the various
authors is the necessity of introducing forgers during the training phase. Forgers
are not readily available and the class of forgers is difficult to define. Suggested
solutions to the problem are to use networks designated for one class of signers,
to use random forgeries or computer-generated forgeries from genuine signatures.
Another difficulty is the number of signatures needed for the enrollment, around 10
to 20 (see Tables 1 and 2), which is greater than the number of references used in
traditional systems (see Ref. 72). The development of the neural network approach
is still in its early stages, however, and research in this domain will probably intensify
in the future.

5. CONCLUSIONS

As we have attempted to demonstrate by providing a brief review of the work
that has been done in the field since 1989, signature verification is a very active
and multifaceted domain that continues to attract the attention of researchers.
Given the complexity of the subject and of the financial interests involved as a
consequence of signature fraud, it is more than likely that this level of enthusiasm
will be maintained for many years to come.

Our hope is that this report on the state of the art will be useful to researchers in
the field and will serve as a good introduction to the work published in this special
issue.
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