
 

On-line signature verification based on optimal  feature 
representation and neural-network-driven fuzzy  reasoning 

 
 

Julio Martínez-R.,  Member, IEEE. Rogelio Alcántara-S., Member, IEEE.
 

 
   Abstract___ In this paper we present an innovative approach to 
on-line handwritten signature verification based on optimal 
feature representation (OFR) and neural-network-driven fuzzy 
reasoning (NND-FR); OFR is introduced here and is different 
from feature selection and generation. To create a reference 
signing model of a person, a set of shape features and dynamic 
features are extracted from a set of original signatures. 
Subsequently, for each distinctive feature, an averaged prototype 
and a consistency function are calculated using genetic 
optimization, this procedure derived from our concept of optimal 
feature representation. Two NND-FR systems are trained using 
the prototype and consistency function of each feature. For 
verification, every feature is compared against its optimal 
reference using the NND-FR scheme, evaluating separately the 
form and dynamics of a questioned signature. Our verifier was 
tested using 1923 signatures from 36 signers in the context of 
random and skilled forgeries, resulting in a misclassification rate 
as low as 0.14%. 
 
   Index terms___ feature representation, feature selection, genetic 
algorithms, neural networks, neural-network-driven fuzzy 
systems, on-line signature verification 
 
 

I.  INTRODUCTION 
 
Automatic signature verification is an active field of 
research with many practical applications, ranging from 
access control to sensitive resources and law 
enforcement to security and fraud prevention in checks 
and credit cards [1]. A comprehensive survey of 
distinctive features in handwritten signatures,  classifiers 
and other techniques related to on-line signature 
verification can be found in [2], [3], [4], and [5].    
   Signature verification can be considered a special case 
of pattern recognition. Like in any pattern recognition 
problem, in signature verification distinctive features can 
be extracted from a set of original signatures.  These 
features can be in the form of functions of time or global 
parameters [5].  
The problem of feature selection, is  related to the fact 
that the number of features at the disposal of the 
designer of a classification system is usually very large.  
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This number can easily become of the order of dozens or 
hundreds.  
   A subset of features  out of the universe of all the 
avaiable features can be selected  according to some 
criterion, such as statistical hypothesis testing or  class 
separability, thus reducing the quantity of features to be 
used to a few. Feature generation, on the other hand, is 
the transformation of the selected features into a format 
that provides, for example, a higher class separation. 
Feature generation includes linear transforms, such as 
the Karhunen-Loève transform, discrete Fourier 
transform, discrete Wavelet transforms, Wavelet 
packets, and others [6]. An appropiately chosen 
transform can exploit and remove information 
redundancies, which usually exist in the set of samples 
obtained by the measuring devices.  
   Once a feature has been selected and properly 
transformed, it must be represented, meaning that a 
reference or prototype must be created from a set of 
exemplars of the feature.  Typically, a feature is 
represented by its mean or average value. 
   As we shall show later on, an appropiate representation 
can be created to ensure the highest between-class 
separatibity between class ω0 and class ω1, which for 
singature verification represent the genuine class and the 
forgery class. This is done creating an optimized 
representation in contrast to a simple average 
representation. What is remarkable here is a) the 
optimized representation of features have not been 
previously exploited, existing only reference to feature 
selection, feature generation [6], [7] and reestructuration 
of feature space [8], and b) this representation is quite 
significant to achieve excelent results in any pattern 
recognition problem. 
  In regard to the application of on-line signature 
verification, shape-related and dynamics-related features 
are calculated. The results obtained in this stage are used 
to train two  NND-FR systems per signer, in an 
architecture that resembles the process followed by  
human forensic examiners [9]. The judgment of 
genuiness is established by a 2-input/1-output fuzzy 
classifier, which evaluates the balance between rhythm  
and form of a questioned signature with respect to the 
writing habits  of a person. 
   The rest of this paper is organized as follows. Section 
II describe the concept of optimal feature representation 
in comparison to variable and feature selection. The 



 
overall approach of our automated signature verificator 
is stablished in section III. Section IV deals with the 
NND-FR systems as used by the verification system. 
The fuzz combiner of shape and dynamics characteristics 
a questioned signature is presented in section V. Section 
VI explains the nature of the database collected for 
signature verification and shows the verification results. 
Finally, in section VIII some conclusions are drawn. 
 
 

II.  OPTIMAL FEATURE REPRESENTATION 
 
Optimal feature representation (OFR) is a concept that 
we are inserting to the field of pattern recognition, and is 
used here for on-line signature verification producing 
very encouraging results. We describe this new approach 
in the following paragraphs. 
 
A.  Variable and Feature selecction. 
   Variable selection, refers to the problem of selecting 
input variables that are most predictive of a given 
outcome. This problem is found in all machine learning 
tasks. Feature selection refers to the selection of an 
optimum subset of features derived from these input 
variables [10]. Variable selection has been in the interest 
of many researchers in areas of application for which 
datasets with tens of hundreds of thousands of variables 
are avalaible. Given that more than one feature can be 
extracted from a single variable, the problem of  feature 
selection is still an open an difficult problem.  
   The definition of the mathematical statement is not 
wadely agreed. Some interpretations include a) 
discovering the variables relevant to the concept, and 
how relevant they are, and b) finding a mininum subset 
of variables that are useful to the predictor (classifier, 
regression machine, etc.).  
   Determining an optimum number of features can be 
made using methods that asses the quality of feature 
subsets according to the prediction error of an predictor. 
These methods are called wrapper methods. Besides, 
there exist methods that embed feature selection in the 
learning algorithms.  
   Some contributions to the art of feature selection are 
the following. In [11], Vafaie and De Jong,  describe an 
approach to improve the usefulness of machine learning 
techniques for generating clasiffication of real world 
data. The heart of their proposal is a feature selection 
architecture in which a search technique (genetic 
algorithms) is applied to a feature set, exploring the 
feature space. Once a feature subset has been selected, a 
stage based on a given criterion function and a 
classification process measures the goodness of 
recognition for the specific feature subset. At the end of 
this iterative search, a “best feature subset” is selected. 
In [8] these same authors use genetic algorithms for 

reestructuring feature space representations. In this case 
a “best feature set” is obtained applying simple 
arithmetic operations  such as +,-,*,/ to the set of original 
features. The genes of the genetic algorithm encode 
certain combinations of arithmetic operations. For 
example, F1-(F2+F4) can be used to create a new 
feature, Fx. Fx is evaluated according to an evaluation 
function, and its discrimination powers are calculated.  
   In [12], Skalak demonstrates that feature selection can 
be of great help in reducing computational costs without 
sacrificing accuracy in pattern recognition problems. In 
[13], Yu and others use genetic feature selection and 
fuzzy and crisp nearest neighbor classifiers for 
hyperspectral satellite imagery. The selected genetic 
algorithm is a simple one. Once again, feature selection 
demonstrates to be a powerful tool to improve an 
automated classification system.  
Feature generation, is the transformation of the selected 
features by linear transforms, such as the Karhunen-
Loève transform, discrete Fourier transform, discrete 
Wavelet transforms, Wavelet packets, and others [6]. An 
appropiately chosen transform can exploit and remove 
information redundancies, which usually exist in the set 
of samples obtained by the measuring devices.  
Feature selection and generation are typically the first 
stages in the design of any pattern recognition system. 
 
B. Feature representation. 
   So far, the concepts of feature selection and generation 
have been explained. Now we will introduce the concept 
of feature representation. In Fig. 1a it can be seen a 
typical design flow of a pattern recognition system [6]. 
The design of a pattern recognition system involves, in 
its early stages, the selection and generation of features. 
Features can be scalars or  vectors. 
   In the general case L scalar features are used and form 
a feature vector, x =  [ x1, x2, ..., xL]T; when the feature is 
represented by a time series or by a collection of 
succesive samples, a set of L  features form a feature 
matrix, X =  [ x1, x2, ..., xL]; no matter what, each of the 
feature sets identifies uniquely a pattern.  In the sequel, 
we use interchangeably scalar features and vector    
features to refer to features.  
   In  Fig. 1b, it is  shown an augmented scheme of the 
design flow. It includes a block named feature 
representation. To understand the functionality of this 
block lets situate ourselves in the context of a real 
pattern recognition problem. Without any loss of 
generality, consider that the stages of feature generation 
and feature selection have been accomplished. In this 
way, M (with M<L) features are at the disposal of the  
designer; suppose now that N samples of the object or 
phenomenon were used to choose the M features.  There 
exist N rows in a matrix describing N samples or 
exemplars  of  the  object.  Now   the   question   for   the  



 

 
 
Fig.  1.  Insertion of feature representation in the design cycle of a pattern recognition system 
 
designer is: which feature value is the most 
representative, amongst the N samples, for comparison 
purposes?. In most cases, the designer of the pattern 
recognition system decides to use the mean or average 
value of the feature along the N samples. Assuming N 
samples and M features, the most representative values 
of the features can be accomodated in a 1xM vector 
allocating the mean values of each feature. Figure 2 
ilustrates this typical procedure. Although this approach 
is  widely adopted in practice, it is easily demonstrable 
that such  representation does not produce the best 
between-class and within-class measures in pattern 
recognition problems, when they are used as reference 
vectors or class prototypes in two-class or multi-class 
problems.  
   What we propose as  optimal feature representation, 
is to find a representation capable of producing the 
largest between-class and an acceptable within-class 
distance measures. Acceptable here means that the 
within-class distance is no worse than the within-class 
distance attainable by a simple mean value 
representation.  
   Lets start with some definitions. First, this technique is 
applicable to both mutli-class (ωωωω0 ωωωω1 ωωωω2 ωωωω3 ... ωωωωC) and 
two-class problems (ωωωω0 ωωωω1). A multi-class problem must 
be converted to a two-class problem for every class, by 
making ωωωω0 = ωωωωc  and ωωωω1= ΩΩΩΩ, where ΩΩΩΩ is the set of all the 
sample feature vectors excluding the samples belonging 
to class  ωωωωc. 
 

 
Fig. 2   Typical average representation. 

The goal is to find an optimal feature vector 
representative of class ωωωω0  whose  distance to the closest 
sample pattern, or feature vector, of class ωωωω1 is 
maximum, keeping a reasonable within-class distance. 
The two characteristics mentioned above are met with 
the process shown in Fig.3. Note the use of a genetic 
algorithm. Genetic algorithms (GA’s) are adaptive 
search techniques which have demonstrated substantial 
improvement over a variety of random and local search 
methods. The genetic algorithm here is used to compose 
the feature representation of class ωωωω0. The composition 
of the representative of class ωωωω0 is made averaging some 
out of the N feature vectors. This average representation 
keeps the within-class distance within reasonable limits. 
The subset of  feature vectors conforming the 
representative feature vector is selected by the genetic 
algorithm according to the following general cost 
function J:  
 

                  J = min[d(ap,ΩΩΩΩ)],                         (1) 
 

where:   J, is the cost function to be maximized. 
             d,  is a distance measure suitable to the problem      
                  to be solved. 
            ap, is an averaged prototype candidate to be the  
                 optimal representation of the feature. 
            ΩΩΩΩ,  is the set of all the sample feature vectors in  
                  ωωωω1. 
 
   The main problems in applying GA’s to any situation  
 

 
Fig. 3  Optimal feature representation. 



 
 

 
 
   Fig. 4   Architecture and overall approach of the automated verifier with optimal feature representation. The optimal references are 
                calculated in the enrollment and training phase, in the blocks of the modeling stage. 
 
are selecting an appropiate representation and an 
adequate evaluation function. The evaluation function 
was stated in (1). The problem of representation here is 
solved assigning an index number to each sample feature 
vector of class ωωωω0. To link the problem to the genetic 
algorithm, the index is converted to a binary number 
which is embedded onto the chromosomes in the 
evolutionary process. Several binary indexes placed 
side-to-side conform the binary chromosome. A 
population of chromosomes prepares the genetic 
algorithm to start the evolutionaty process, and the 
operations of fitness evaluation, selection, crossover, and 
reproduction are executed. 
 
 

III. OFR FOR ON-LINE SIGNATURE VERIFICATION 
 
To test our proposal of OFR, we undertake the problem 
of on-line signature verification with an approach based 
on the procedures of an expert examiner of signatures. 
The expert examiner considers that the signing process is 
dominated by personalized writing habits [9]. A 
signature is the result of a complex combination of 
personalized patterns of shape and rhythm.  It is 
important to remark that it is the final balance of rhythm 
and form which is critical in signatures comparison, not 
only the matching of some individual elements [9], or, in 
our perspective, some individual features. It is important 
to mention in advance that besides the reference 
prototype, here we calculate a consistency function and a 
weighthing factor for each feature. 

A. Overall strategy. 
   Fig. 4 summarizes the procedure of our overall  
approach. Two phases can be distinguished. In the 
enrollment and training phase, 16 instances of a 
signature are picked up from an acquired database. 
Repetition of signatures is allowed if less than 16 
exemplars have been donated by the signer;  80 random 
forgeries (4 genuine from other 20 signers) and 5 
synthetic skilled forgeries are also included but not 
shown in figure 1 for simplicity. The objective of 
including these few synthetic skilled forgeries is to 
enable the system to reject forgeries of good quality. 
More about synthetic skilled forgeries later. Five shape–
related and five dynamics-related features are extracted 
from every signature. Once the two sets of features are 
calculated the goal  is to generate a model for the signer. 
Morover, an optimized model. The elements of the 
model are an optimal averaged prototype function P, the 
representative function of class ω0; a consistency 
function C, and a weighting factor W, per feature. To 
create these elements, a genetic algorithm is used as 
described in section II. The averaged prototype function 
must yield a weighted distance or error minimum when 
compared to the respective features derived from 
genuine signatures (within-class distance), and  
maximum when compared to the respective features 
derived from skilled forgeries (between-class distance).    
    The goal of the grading stage is to grade all signatures, 
genuines as well as forgeries, in the range 0-1. The 
distances (or errors) per feature and the grades of every 
signature are used to train two NND-FR systems, one for 



 
shape (form) and one for rhythm (dynamics). As a 
consequence, each NND-FR system learns to grade a 
questioned signature according to: a) deviations with 
respect to normal variations of genuine signatures, b) 
consistency in the signing  process  of  the  original  
signatures,  and   c) importance   or contribution of every 
feature to a correct verification. 
   In the verification phase, a questioned signature is 
digitized and its respective shape and rhythm features 
are computed. The error between every feature and its 
reference is calculated in the respective error unit (see 
Fig. 4). The set of  shape errors is used to train the NND-
FR shape unit. The output of this unit is a grade of shape 
for the questioned signature. A grade for signature's 
rhythm is calculated in a similar manner. Finally, a 2D 
fuzzy system calculates the degree of certainty (DOC) in 
which a signature should be considered genuine.  
   In order to reduce the FAR (false acceptance rate) of 
this system, we use synthetic skilled forgeries. It is 
equivalent to know in advance the form of potential 
forgeries, and include this knowledge in the class ω1 to 
create a more discriminant reference  function. To do so, 
instead of distorting the  image of original signatures (as 
other researchers do), we distort the waveform of the 
extracted features to represent the signatures, based on 
the observation that the features from skilled forgeries 
are very similar to the features from originals, having 
random differences in magnitude and phase. To create 
synthetic features, original features are phase shifted, 
corrupted by additive noise,  and lowpass filtered. Our  
experiments demonstrated that skilled forgeries are 
better discriminated if synthetic skilled forgeries are used 
to generate the model functions.   
 
B.  Database description and feature extraction. 
A signature to be analized is captured using a digitizer 
tablet and a pen. Data are acquired every 1/128 seconds 
and are as follows: X,Y coordinates of pen position  and 
absolute pressure, both versus time.  
 
   1) Shape related features. According to Slyter [9], 
shape related features should reflect the signing habits of 
a person in relation to gross forms, variations in 
signature's design, connective forms and micro-forms 
[9]. As a consequence, we should derive, from any 
signature, functions or parameters that reliably reflect 
the variations and consistency of such elements. This is 
still an open and difficult problem [4]; however, in [5] it 
can be found a set of  5 functions  that are aimed to 
characterize the shape of a signature;  these functions 
can discriminate or 'discover' discrepancies in, at least, 
slant and local shape of a signature, as it is shown in a 
contrived example given by Nalwa, and are inherently 
independent of the position, size and orientation of the 
signature. We adopted these features or characteristic 

functions as our shape descriptors, given that we are 
mainly focused in feature representation, not in feature 
generation. The features are measured over the 
parameterized length of a polygon fitted to the ordered 
samples of the on-line signature with respect to a moving 
coordinate frame and using a gaussian weighting 
window, and they are listed in table 1. For 
implementation details please refer to [5]. Original 
names were preserved for ease of identification. 
  
  2)  Rhythm and dynamics related features. The relevant 
dynamic features are listed in table 1. Absolute speed is 
derived from x(t), y(t) data. In order to obtain 
representations of equal length, the speed function is 
resampled to have a fixed length of 256. Lets symbolize 
absolute speed as Sp(t). 
   Pressure is directly obtained from the digitizer tablet, 
and the variations in pressure patterns dP(t) are 
calculated by differentiation of absolute pressure. Top  
tow(s,t) and base bow(s,t) patterns of writing are 
obtained sampling the upper and lower envelopes of the 
signature's digital image. In addition, the description of  
these patterns is augmented with timing information: to 
every point belonging to the upper/lower envelopes a 
time instant is associated to it according to the instant in 
which the point under consideration was drawn.  In this 
way, if a forger is able to reproduce the visual aspect of  
a signature with a different trajectory with respect to the 
original signature this fact becomes evident using this 
description of the envelopes of a signature. Signature's 
representation in the features space is shown in table 1.       
   A total of 5 features are shape-related and 5 are 
dynamics-related. Once a feature is computed, its length 
is normalized to a fixed size to all signers, making a 
point-to-point averaging and comparison across different 
instances of a signature feasible. 
 
C.  Optimal feature representation using GA's.  
   Genetic algorithms is a tool very little usage in the 
field  of  signature verification. In  [14],  Yang and 
others used  a genetic algorithm  to select partial curves 
along a signature. The features used were  length,  slope,   
 
Table 1   Signature representation in the features space 
     Feature   Meaning Siz

e 
Cx(l) X coordinate of local center of mass  82 
Cy(l) Y coordinate of local center of mass  82 
T(l) Torque exerted about origin of the  82 
S1(l) Curvature ellipse measure 1 82 
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S2(l) Curvature ellipse measure 2 82 
Sp(t) Speed as a function of time 256
P(t) Pressure as a function of time 256
DP(t) Pressure change patterns 256
Bow(s,t) Base of writing with timing  84 
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Tow(s,t) Top of writing with timing  84 



 
largest angle, and curvature of  partial curves along the 
signature. In that study, the emphasis was set mostly on 
the genetic algorithm itself and no verification results 
were presented. In [15] the authors report basically the 
same technique, but the optimization is carried out over 
the virtual strokes (i.e.  points of  pen-up trajectories)  of 
a signature.  Some results were reported.  In [16],   
Wijesoma and others proposed the use of genetic 
algorithms with no special improvement in the genetic 
algorithm itself, but with emphasis on the selection of a 
subset of features out of  a set of 24 features representing 
the shape and dynamics of a signature. Please note that 
so far the use of genetic algorithms in signature 
verification have been either to select a subset of features 
[16] or to segment a signature in partial curves whose 
features are used for verification [14], [15].  The 
classifier used in all cases was fuzzy logic. We should 
now use the genetic algorithm to create a prototype  
function, a consistency function, and a weighting factor 
that indicates how much a feature is able  to contribute to 
the purpose of signature verification, in accordance with 
our optimal feature representation. 
   Recalling that we consider the problem of signature 
verification as a problem of pattern recognition with two 
classes (ω0, ω1), the goal of the genetic algorithm here is 
to produce a prototype function, a consistency function, 
and a weighting factor for each feature. The class 
'genuine'  or ω0 consists of genuine signatures. A 
prototype function PF and its associated consistency 
function CF are constructed averaging a set of N vectors 
of a feature from N genuine signatures as follows: 
 

 (2) 
 
 
 

(3) 
 
 
where     PF,  prototype function. 
              CF, consistency function. 
                N, number of functions to conform the model 
         with   
 
The 'others' class (ω1) is created computing the 
corresponding features from 4 genuine signatures of 
other 20 signers in the database, plus 5 synthetic skilled 
forgeries. A synthetic feature is obtained from a genuine 
feature by  exchanging  two segments of the vector that 
contains a feature, adding random noise, and filtering the 
resulting vector with a LPF IIR filter, with normalized 
bandpass limit set to 0.8 and a order of 10. Filtering 
gives some additional phase shifting. Fig. 5 shows 
genuine and synthetic features. The solid line indicates 
the feature of an original. A real skilled forgery is drawn 
in dashed line.  Dash-dot line is the synthetic feature that  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Solid line: genuine; dashed line: a real skilled forgery; dash- 
           dot line: synthetic skilled forgery in the features space. 
 
acts like a skilled forgery. Please observe the similarity 
between real forgeries and synthetic skilled forgeries. 
   At this point two data sets have been described, one for 
the class 'genuine' (w0) with N elements and other for the 
class 'others'  (ω1) with 85 elements. A distance measure 
between a feature and its corresponding reference is 
given by (3) 
 
 

  (4) 
 
 
   Distance d in (4) is a measure of the error in the 
features space for a single feature between two 
signatures.  
 
D.   Maximizing  between-class distance. 
   From the database, 16 signatures of a signer are picked 
up to build the model of each feature.  Every signature is 
identified with a four bits binary number. Let be N a 
number of signatures (4<N<16) that belong at a given 
moment to the 'genuine' or ω0 class. A chromosome is 
coded, using n signatures out of the 16 signatures 
previously chosen, by concatening their respective bit 
strings, being the subset of n signatures randomly 
selected initially. For example, for n=5: 
 
        Chromosome  codification   Subset of Signatures           
   '0010|0111|1010|0001|1001'             {2,7,10,1,9} 
 
   The repetition of  signature's index or identifiers  in the 
bit string is allowed. The initial population of 
chromosomes is set to the length (measured in bits) of a 
chromosome  plus  4,  which  is  somewhat  arbitrary  
but yields good results.  Once the initial population has 
been created, the  evolutionary  operators  of  selection, 
mating,  reproduction,  and  mutation are carried out 
over the primitive chromosomes. Rank-based selection is 
used here [17]. To keep only the top performers of each 
generation the generational approach is adopted [17]. 
Mutation is allowed to occur 4 times during the whole 
execution of the GA; this selection of mutation 
occurrence is helpful in jumping out of local minima 
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during the convergence process. The objective function 
of the GA is stated as follows:  
 

                 t = (min(ied)-max(iad))/max(ied)              (5) 
 
where ied –inter-class or between-class distance- and iad 
–intra-class or within-class distance- are the sets of all 
the distance measures or errors between every element 
of the 'others' and the 'genuine' classes respectively 
against a reference, as given by  (4). The reference is 
built in every cycle of the GA using (2) and (2), being n 
variable and the reference prototype being created with 
the signatures whose identifiers are coded in every 
chromosome.  The GA is stopped when the average 
fitness of the population and the fitness of the fitest 
chromosome are equal or when the iteration number 
reachs 45, whatever happens first.  The GA is executed 
11 times, for n=5 to 15, so this process produces 11 
prototype and 11 consistency functions (eleven pairs) for 
a single feature. Every pair of functions are used to 
evaluate (4) to produce the sets ied and iad.  A pair is 
chosen to be the prototype and consistency functions 
according to max(min(ied)-max(iad)).  Fig. 6 shows an 
example of ied and iad. Please observe the band 
separation between the classes 'others' and  'genuine'. 
 
E.   Weighting the  features. 
   Lets define the matrix of  shape descriptors SD = 
[cx,cy,T,s1,s2] of size 82x5, and error in shape 
descriptors as ESD = (Ecx,Ecy,ET,Es1,Es2) of size 5, as 
descriptors of the behaviour of a signature in the features 
space. Matrix SD contains the values of the five features 
and ESD contains the error between each feature and its 
corresponding optimized model function according to 
(4). As noted in Fig. 6, there exist a band, or class 
separation, that is different to each  feature of the same 
signer.  Lets consider this class separation as a symptom 
of how much a feature is relevant to verify the 
authenticity of a signature and lets assign a weighting 
factor to each feature as follows: 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
Fig. 6  Class separation as a result of the evolutionary process. 

 

wff = (min(ied)-max(iad))/max(ied)     (6a)         

WF = [ wfcx wfcy wfT wfs1 wfs2 ]           (6b) 

where wf stands for weighting factor and WF is a vector 
of personalized weighting factors. A feature is discarded 
if (6ª) results negative. A grade is assigned to a feature 
considering the standard deviation (σ), mean value (m) 
of the respective set of iad values, and Ef  the feature’s 
error with respect to its model, as follows: 
 
 
 
 
  
 
and putting together all shape related features in a vector 
G:                                           

G = [Gcx Gcy GT Gs1 Gs2]                (7) 

a signature receives a grade of shape GS according to 
(8), 
                                     GS = G * WFT                         (8) 

   This is the equation  of the Grading Units in Fig. 4. 
The same process applies to generate a grade of rhythm 
GR  for any signature. 
   To show the efficacy of the genetic algorithm in 
creating class separation, 241 exemplars are collected 
including random forgeries, skilled forgeries and 
genuine signatures. Please note that this collection of 
signatures includes the signatures used to generate the 
genuine signature’s model as well as other previously 
unseen signatures. For each of these signatures, a 5-
dimensional ESD vector is calculated so that an 241x5 
matrix is created. Lets name this matrix EM or error 
matrix. Applying principal components analysis (PCA) 
to EM a projection of the original 5-D space onto a 2-D 
space is made. Fig. 7, left side, shows this projection and 
discovers an underlying structure of two classes, as 
expected. Solid diamonds correspond genuine signatures 
used for training and hollow diamonds are new genuine 
signatures under test. Intra-personal variability was well 
absorbed. Some skilled forgeries are pointed. For the 
same 241 signatures, Fig. 7, right side, shows the 
evaluation of grade of shape GS, with (7).  The left side 
high values are the grades of the genuine used for 
training; middle zone values are the grades of random 
forgeries, the grades for skilled forgeries are pointed and  
genuine 2 includes grades of genuine signatures under 
test.  
 
 
IV.  NEURAL-NETWORK-DRIVEN FUZZY REASONING 

(NND-FR) FOR CLASSIFICATION 
 
  NND-FR is a family of techniques in which fuzzy 
reasoning is implemented using neural networks [17].  In 
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Fig. 7   Left: projection of the two first principal components of features of 241 signatures showing class separability. Right: Grades of the 
signatures in according to its nature. The group genuines 2 include genuine signatures unseen by the classifier in the training phase. 
 
this work a Sugeno fuzzy system is implemented using 
neural networks. Fig. 8 shows the block diagram of a 
NND-FR system. In Sugeno type fuzzy systems rules are 
typically of the form  if x1 is A1 AND x2 is A2 ... THEN 
y=f(x1,x2,...,xn) where f is a function of the inputs 
x1,x2,...xn. The function f is replaced by a neural network, 
and an induced rule is of the form if (x1,x2,...,xn)  is  As   
THEN ys = NNs(x1,x2,...,xn), where (x1,x2,...,xn) is the 
vector of inputs, NNs  is a neural network that determines 
the output ys (consequent) of the sth rule, and As is the 
membership function of the antecedent of the sth rule. As 
is generated by a neural network. The topology used 
here uses 1 fuzzy rule and is illustrated in Fig. 8 for the 
shape-related features. Note that the inputs to the neural 
networks are the errors between the features of a 
questioned signature with respect to the respective 
models of the genuine signature, defined as ESD. ERD 
or error in rhythm descriptors is used to train the 
rhythm-related NND-FR system. These two NND-RF 
systems are those shown in Fig. 4. The training data set 
of NNmem of the shape-related NND-FR system is given 
in table 2. Again, consider a similar situation for the 
rhythm-related NND-FR. 

 
 
 
 
 
 
 
 
 
 

Fig. 8   Topology of the NND-FR  
   
 

 
Table 2   Training sets for NND-FR systems 
NNmem  inputs Target 
ESD of genuine 1 
ESD of forgeries 0 
NNs  inputs Target 
ESD of  genuine G 
ESD of  forgeries G 

    
 The error sets ESD and ERD and the grades G in table 2 
are those mentioned in subsection III.E, and are derived 
from the original data sets used to create the reference 
models. 
     

V. FINAL DECISION. 
 
   In the verification phase (see Fig. 4) a final decision on 
whether a signature is genuine or a forgery is made by a 
2-D fuzzy logic Mamdani system. The  universe of 
discourse of the inputs ranges from 0 to 1, which is the 
output range of the NND-FR systems. The universe of 
discourse of the output  goes from 0 to 100, and this is 
the range of values assigned to the output variable DOC 
–degree of certainty- in which a signature can be 
considered as genuine. The fuzzy rule base is shown in 
table 3. It is worth to mention that fuzzy rules are crafted 
to avoid overemphasize the importance of shape on 
rhythm and vice versa, because, as stated earlier, an 
expert examiner considers that it is more important the 
complex balance of rhythm/form than the individual 
matching of features because it is more difficult to 
imitate simultaneously both aspects. Membership 
functions are omitted.  
 
 
 
 
 



 
Table 3   Fuzzy rule base.  Linguistic variables: VG, very     
                good; G, good; R, regular; B, bad; VB, very bad. 
 GRADE OF RHYTHM 

  VG G R B VB 
VG VG VG G R B 
G VG G R R B 
R G G R B B 
B R R R B VB G

R
A

D
E

 
O

F 
SH

A
PE

 

VB R R B VB VB 
 

 

VI.   SIGNATURES DATABASE AND RESULTS 

   The database consisted of  923 genuine signatures 
from 36 signers and 1000 forgeries from 36 forgers. For 
each signer there are 27 genuine samples and 33 forgery 
samples. The signatures were collected over a period of 
3.5 weeks, thus avoiding the side effects or artifacts in 
signatures due to exhaustive or continuous efforts. Every 
signer was allowed to get used to comfortably  sign on 
the tablet before donating any signature. The forgers 
were advised in advance about all aspects of the signing 
process of their “victims” and were allowed to practice 
as much as they considered necessary to forger the 
victims’ signatures. Every signer had the choice of 
rejecting a signature if the exemplar was  not adequate. 
   In the training phase, 4 random forgeries, 5 synthetic 
skilled forgeries and 16 genuine signatures per signer 
were used. To test the verifier, 210 random forgeries, 30 
skilled forgeries, and  27 genuine signatures were used 
per signer. 7324 verifications were realized. Only 10 
classifcation errors occurred. The global correct 
verification rate was 99.86%. FRR (false rejection 
rate), is the percentage in which the system rejected 
genuine signatures considering that they are forgeries. It 
is also known as type I error. For this system and for the 
database used the FRR was 1.05%. FAR (false 
acceptance rate) is the percentage in which the system 
accepted forgeries as if they were genuines. Again, it is 
also known as type II error. For this system and the 
database used, it  was 0.27%; the average error can be 
set to 0.66%. In this terms, the efficiency of the system 
was 99.34%. As can be seen in Fig. 7, if only random 
forgeries are considered the misclassification rate is 0%. 
   A question that might arise in the mind of the reader is 
wether it is or is not a remarkable result in the field of 
signature verification. Plamondon reports in [4] FRR in 
values ranging from 1% to 50% with skilled forgeries, 
and 4 systems with 0%. Nevertheless, it is important to 
point out that any system achieving 0% in FRR 
necessarily can not achieve a low value of FAR. This is 
the case of the 0% FRR reported by Plamondon. With 
respect to FAR, the range goes from 0.4% to 12%,with  
2 with 0%. Again, 0% FAR implies FRR > 0%. In this 
context, and taking into account that the system was 

tested with realistic skilled forgeries and that the 
database used is relatively large, we conclude that the 
performance is very high.  
   In relation to the optimal feature representation, 
although not presented here, in some preliminary results 
of experiments done without such a representation, it 
was encountered that exactly the same architecture had a 
performance very low in comparison to what was 
attained using OFR. FRR was approximately of 8%, 
while FAR was 10%. It is quite indicative that OFR is a 
useful tool to improve the accuracy of any pattern 
recognition system.   
 
 

VII  CONCLUSIONS 
 

   The results presented are very encouraging. As it was 
shown in this paper, OFR can be added to the typical 
cycle of design of a pattern recognition system to 
improve its accuracy to almost 100%. Unfortunately, it 
must be said that this technique adds computational cost 
in the training phase. Another drawback of OFR became 
evident when it was applied to the on-line signaure 
verification problem. There is no strict control on the 
within-class distance. We are actually working around 
this problem and some results indicate that it is posible 
to control this aspect of the algorithm. It is part of the 
present and  future work related to this subject. Other 
areas of future work include to test the OFR in signature 
verification with escalar features, such as global or RMS 
values of position, speed, acceleration, pressure, and any 
other variable at the disposal, such the angulation of the 
pen while the signature is generated.  
   The approach of the forensic examiner embedded in 
the architecture of  the verifier played a important role 
too, since it allowed us to asses which specific aspects of 
the signature failed in the signing process.  
   The use of weighting factors applied to individual 
features allowed  the system to discover the 
discrimination power of every feature and its 
contribution to a correct verification of a questioned 
signature.   
    The inclusion of synthetic skilled forgeries in the 
modeling stage as presented here is novel in this research 
area. Another new inclusion in this field is the use of top 
and base patterns of writing associated with the 
corresponding time instants in which their points were 
drawn.  
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