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Abstract

A method for the automatic verification of on-line
handwritien signatures using both global and local fea-
tures is described. The global and local features cap-
ture vartous aspects of signature shape and dynamics
of signature production.

We demonstrate that with the addition to the global
features of a local feature based on the signature like-
lihood obtained from Hidden Markov Models (HMM),
the performance of signature verification improves sig-
nificantly.

The current version of the program has 2.5% equal
error rate. At the 1% false rejection (FR) point, the
addition of the local information to the algorithm with
only global features reduced the false acceptance (FA)
rate from 13% to 5%.

1 Introduction

Signature verification is a common behavioral bio-
metric to identify human beings for purposes of es-
tablishing their authority to complete an automated
transaction, gaining control of a computer, or gain-
ing physical entry to a protected area. Signatures are
particularly useful for identification because each per-
son’s signature is highly unique, especially if the dy-
namic properties of the signature are considered in
addition to the static shape of the signature. Even if
skilled forgers can accurately reproduce the shape of
signatures, it is unlikely that they can simultaneously
reproduce the dynamic properties as well.

On-line signature verification schemes extract sig-
nature features that characterize spatial and temporal
characteristics of a signature [1]. The feature statis-
tics of a training set of genuine signatures are used to
build a model or template for validating further test
signatures [2]. Selecting a good model is the most im-
portant step in designing a signature verification sys-
tem. The other important component of the system is
a distance measure between a signature and its model.
Signature models are usually described by the set of
parameters (features) which can be roughly divided
into local and global feature subsets. Global features
are calculated for sufficiently large segments of signa-
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nature) while local features are calculated for smaller
segments (such as equally spaced sub-segments or even
every signature sample). For example, total signature
time and length of a signature are global features while
slope tangent at each point is a local feature. Local
features are more sensitive to handwriting variations
than global features, but require more computer re-
sources for processing and storage. The feature set se-
lected should be a judicious choice of global and local
features having maximum discriminative power while
keeping the set cardinality small.

tures Ssuch as pen-down segments or the whole sig-

There are several methods of using local features in
signature verification [3]. The most popular method
is based on elastic matching by Dynamic Warping
(DW) [4]. An alternative strategy (commonly used
in speech recognition) is using Hidden Markov Model-
ing (HMM) [5, 6]. Dynamic warping performs flexible
matching of local features of a model and a signa-
ture sample. The closeness of the match is used as
discriminator. An HMM performs stochastic match-
ing of a model and a signature using a sequence of
probability distributions of the features along the sig-
nature. In this paper we model the signing process
with several states that constitute a Markov chain,
each of them corresponding to a signature segment.
The states are not directly observable (hidden); we
can only observe the signature local features ( such
as tangent angles). The observations are bound sta-
tistically with the model states and conditionally in-
dependent in each state. During training, the model
parameters are estimated from a set of valid signa-
tures. During a signature verification, the probabil-
ity that the signature is genuine is calculated. If this
probability (which is called the likelihood function) is
high, the signature is accepted otherwise 1t is rejected.
This approach can be viewed as a statistical matching
of the test signature with the signature HMM. In our
signature modeling, we use the handwriting tangent
and its derivative as an observation vector in equal
length segmentation. For this observation vector, the
HMM likelihood method of the signature verification
performed comparable to the Euclidean distance rule



presented in an earlier paper [2]. However, when we
combined the global and local features, we obtained
significantly better performance.

The remainder of the paper is organized as follows:
Section 2 presents signature normalization by Fourier
transforms, Section 3 describes the global feature se-
lection, Section 4 describes the log-likelihood compu-
tation using discrete HMM’s and Section 5 describes
the results of our signature verification algorithms on
the Murray Hill signature database [2].

2 Signature Pre-processing
2.1 Definitions

It is convenient to represent planar curves (zg, yo),
(rl,yl) . (zN-1,Yn—1) using complex vector nota-
tions.

Using vector notations, the combined affine trans-
formation of a curve can be expressed as

zI:Az—i—B (1)

where A = Kexp[j#], K = |A| is related to scale,
6 = arg (A) is related to angle of rotation, and B is a
complex quantity related to the displacement.

2.2 Fourier Normalization
Fourier transform of a planar curve z is defined as
a mapping

7 = Fz (2)

where F is the Fourier matrix. The entry in row j
and column k of F' is defined as Fj; = wi* where w

is the primitive N*? root of unity and is defined as
w = exp [2wi/N]. Since this mapping is invertible:

z=F 1z (3)

and since the Fourier matrix is both symmetric and
orthogonal [9]
EETR

F NF 4)
The sequence Z can be used as an alternative represen-
tation of a curve in the ”spatial frequency” domain.
This and similar transforms are very popular in im-
age processing, because often many coefficients of Z
are small and can be neglected thus giving a more
compact and smoothed curve representation. In our
implementation, we obtained the Fourier transform of
the first difference of the coordinates, instead of the
actual coordinates as shown in equation 2. This was
done to reduce the end-point distortions in the recon-
structed signature [7].

The objective of signature normalization is to trans-
form a signature to some canonical form which is then
processed by the signature verification algorithm. Our
approach to signature normalization is based on the
normalization of its Fourier coefficients. First we set
7y = 0 which according to equation (1) is equivalent to
translating the coordinate system origin to the curve
centroid

N-1
Zo=1/N> " z (5)

k=0

Next, we divide the rest of the Fourier coefficients by
Z1. Since the Fourier transform is linear, each coordi-
nate of the translated signature is divided by Z; which
according to equation (1) is equivalent to scaling by
K = 1/|Zi| and rotating by 6§ = —argZ;.

The normalized signature is obtained by the inverse
transform of the normalized Fourier coefficients and
is used for the computation of the global and local
features.

3 Global feature-based

procedures

Global features by definition are properties of the
signature as a whole, or of a substantial part of the sig-
nature, rather than a property of the signature that
depends on an individual shape or detail within the
signature. The two main global aspects of the signa-
ture data, namely, shape and dynamics play somewhat
complementary roles in distinguishing genuine signa-
ture from forgeries, i.e. the more forgers try to match
every detail of a signature’s shape, the less likely they
are to match its dynamics, and vice versa. The advan-
tage of using dynamic features is that they are “hid-
den”, since they are not apparent from an examination
of a paper copy of the signature. Therefore verifica-
tion procedure should include a mixture of both shape
and dynamic features.

In our current algorithm, we use 23 global features.
The names and analytical expressions for computing
these features are explained in the Appendix. There
are two time-related features: The first is the total
signature time 7. The second is the time down ratio
T4r, which is the ratio of pen-down time to total time.

Six other dynamic features depend on the writ-
ing velocity and acceleration. The x,y components
of velocity and acceleration were computed from the
derivatives of the pen coordinates with respect to time

verification

V= (ve,vy) = (2,9), a=(ag,ay) = (v, ¥y).

The derivatives were calculated using cubic smooth-
ing B-splines [10]. The path velocity magnitude
(speed) and path-tangent angle of the pen motion are
given in terms of the v,, v, components by

v=(v:+v )1/? 0 =tan™*(vy /vs).

The features derived from these speed components
were root-mean-square (rms) speed V, average hori-
zontal speed V,;, and integrated centripetal accelera-
tion IA4..

While these features are principally related to sig-
nature dynamics, they are all correlated to some de-
gree with the signature shape (for example, the regions
of high velocity are usually related to the regions of
low curvature). Therefore, the shape-related features
should be carefully chosen to be not strongly correlated
with the selected dynamical features. We chose the fol-
lowing features: length-to-width ratio L,,, horizontal
span ratio X, horizontal centroid X.,, and vertical
centroid Y., . Eight features characterize the distribu-
tion den81ty of the path-tangent angles 6, over the
k = 1,2 ..., K data points for a given signature. We



estimate it by the histogram of the angles that lie in
eight sectors between zero and 27 by

Sp=card{f : (I — Dm/d < 0 <Iw/4}/K

where k=1,...,K,l=1,...,8 and card{A} denotes
the cardinality (i.e. the number of elements) of the set
A. The next four features are angle-sector densities of
the angular changes é6; = 6y — 8_1, that lie in four
sectors between zero and 2w

Crm = card{by : (m — D)m/2 < 6 < mw/2}/(K - 1)

where k =2,...,K,m=1,...,4. Two more features,
Vzy, relate to the correlation between the x and y com-
ponent of pen speed, and the first global moment make
up the global feature set.

The verification procedure used in this study are
based on the one discussed in detail in a previous pa-
per [2]. Briefly, the procedure builds a model based on
the genuine signature data since the statistical proper-
ties of genuine signature data obtained from a known
signer should be reasonably predictable. A signature
model for entrant ¢ is a set of means, p, and stan-
dard deviations, o, obtained during training from six
instances of signatures. Therefore, using the above
model for classifying signatures from genuine signa-
tures only, one can define an error measure F; for a
given signature which is claimed to be of entrant z by

2

N Y
E; = (Z (M, — ,uz'k)/ffik)2) (6)

k=1

Here, N is the total number of global features to be
used for verifying the signatures of entrant ¢. My is
the value of the k-th feature as evaluated on a signa-
ture claimed to be that of entrant 1, and p;; and o
are, respectively the mean and standard deviation of
that feature over the reference set of entrant .

Because global features do not relate directly to
the shape of the components of a signature, a signa-
ture model’s discriminative power can be improved by
adding a complementary set of local features which is
described in the next section.

4 Hidden Markov Model For Signa-
tures
4.1 Model Description

We assume that a signature can be described by a
left-to-right HMM whose state-transition diagram is
shown in Fig. 1. According to this model, the hid-
den chain transfers from state ¢ to state ¢ + 1 with
probability a; ;41 or stays in state i with probability
ai; = 1 —a;i41. Let g; denote the state the chain is
in at time ¢, the probability that an observation vec-
tor Oy is inside some quantization region R; while the
chain is in state ¢ is defined by the state conditional
probability b;(j) = P{O+ € R;|q: = i}.

Tt is easy to verify that state duration (state-holding
time) distribution is geometrical for any Markov chain.

e &

Figure 1: Left-to-Right HMM state-transition diagram.

The probability of having d consecutive observations
in state 7, is implicitly defined as:

pi(d) = (aii) (1 — ai) (7)

However, for the relatively small number of states that
correspond to segments of a signature this distribution
is inappropriate. To model more accurately handwrit-
ing process we chose to use explicit duration model-
ing, resulting in a variable duration HMM [11] [12].
This model can also be called a Hidden Semi-Markov
Model (HSMM), because the underlying process is a
semi-Markov process [13]. In this case, state-duration
distribution can be a general discrete probability dis-
tribution. It is easy to prove that any HSMM model is
equivalent to the so-called canonical HSMM in which
a;; = 0 [13]. Thus, for the left-to-right variable-length
HMM there is no need of estimating state transitional
probabilities.

In general, the variable duration HMM is not equiv-
alent to an HMM with the finite number of states, but
in all practical cases it can be approximated by an
HMM by increasing the number of states. A brute-
force approach to this modeling consists of decompos-
ing an HSMM state 7 into unit-duration sub-states
i1,%2, ... with the transitional probabilities a;_1;, =
pi—1(k), a;;i,,, = 1 as shown in Fig. 2.

HSMM state i

Figure 2: Equivalent HMM.

One problem of estimating duration probabilities
pi(k) directly is that it requires many more training
samples than those necessary for the training of ob-
servation probabilities. Since we do not usually use
more than 6 training samples for each signature, an
alternative duration model is used. In this alternative
method, only the duration boundaries 7; and T; are
estimated for each state using the segmentations ob-
tained in the last iteration of training. Then the dura-
tion probabilities outside the range [, T;] are assigned
a very small value and those inside this range are
assumed to be evenly distributed. Our experiments



show that with limited amount of training data, this
method with a uniform distribution provides much
better results than using an exponential distribution.

Our current method of explicit duration modeling is
based on statistical pattern matching and feature ex-
traction. We would like to emphasize that in signature
verification it is important to find a good discrimina-
tor — a function which separates valid signatures from
forgeries. Signature likelihood and state-durations ob-
tained in this way allow us to do consistent pattern
matching.

4.2 Encoding Signature Samples

Each signature sample is represented as a sequence
of observation vectors. In the current implementation,
each observation vector is composed of the inclination
angle a and the difference between adjacent inclina-
tion angles A«, sampled at points evenly distributed
in terms of arc length (Fig. 3). The distance between
adjacent sample points is proportional to the total arc
length of the script so that each sample has roughly
the same number of sample points. We assume that
o and A« are statistically independent.

Figure 3: Components of an observation vector

Even though the observation vectors are continu-
ous in nature, we chose to use discrete HMMs instead
of continuous density HMMs to avoid making assump-
tions on the form of the underlying distribution. Since
the two features are assumed to be independent, they
are each quantized separately, and a separate proba-
bility distribution is estimated for each feature at each
state. The joint conditional probability is simply the
product of the probabilities of the two independent
features.

A group of simple preprocessing procedures are ap-
plied to the original signature sample so that the ob-
servation vectors can be extracted more reliably. Fol-
lowing a cleaning operation during which irregular
points (isolated points generated by electro-magnetic
interference during data collection) and redundant
points are removed, cusps (points with sharp direction
change) are detected and marked. Then, a cubic B-
spline smoothing filter is applied and, the signature is
re-sampled at intervals of equal arc length. Cusps are
preserved during smoothing and re-sampling to avoid
loosing sharp angles. Finally the smoothed and re-
sampled signatures are normalized using their Fourier
transforms as explained in section 2.2.

4.3 The Likelihood Score

The Viterbi algorithm [5] is used to obtain the
likelihood that the signature can be modeled by the
HMM of the particular subject. The Viterbi algorithm

searches for the most likely state sequence correspond-
ing to the given observation sequence and gives the ac-
cumulated likelihood score along this best path. Using
explicit state duration modeling, the increment of the
log-likelihood score for the transitions to the 7z 4+ 1-th
state are given by

ALjiy1 = logbiyi(k) + pi(d) (8)

ALiy1i41 = logbipa(k) 9)

Although the length of the sequence of vectors is
normalized by the total arc length of the signature,
the exact number of observation vectors is not con-
stant due to the slight length change introduced by
the re-sampling process preserving cusps. To reduce
the effect of length variation, the accumulated log-
likelihood score given by the Viterbi algorithm is di-
vided by the number of sample points to obtain the
final normalized score to be used in verification.

4.4 Training

The HMM of each subject is trained by applying
a segmental k-means iterative procedure [5] across all
the training samples. The procedure is composed of
iterations of the following 2 steps:

1. Segmentation of each training sample by Viterbi
algorithm, using the current model parameters.

2. Parameter re-estimation using their means along
the path.

The initial model parameters are obtained through
equal-length segmentation of all the training samples.
The re-estimation stops when the difference between
the likelihood scores of the current iteration and those
of the previous one is smaller then a threshold (usually
after 5-7 iterations).

The observation probabilities are estimated in the
usual way [5]. The mean of the accumulated log-
likelihood obtained from the Viterbi algorithm is com-
puted for the training signatures.

4.5 Testing

Given a test signature, the Viterbi algorithm is used
to obtain the likelihood that the signature can be mod-
eled by the HMM of the particular subject. The dif-
ference of this score and the mean log-likelihood ob-
tained during training is then used as an error measure
to classify a test signature as a valid or forgery. Fur-
ther, this error measure was used individually and in
combination with the global error obtained by equa-
tion 6. The global and local errors were combined
using an Euclidean method by computing their root
mean-square weighted combination.

5 Performance results and discussion
The performance of signature verification methods
tested on the Murray Hill database will be shown in
terms of Type-1 false rejection(FR) errors vs. Type-2
false acceptance (FA) errors, as the decision threshold
is increased in small increments (Figures 4). The test
database consisted of 542 genuine signatures and 325
forgeries. Each reference set consisted of the first 6
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Figure 4: Error trade-off performance curves

signatures of every one of the 59 subjects. The digi-
tizing tablet used for gathering the signatures had an
80 X 80 mm glass surface and a writing stylus that was
electronically connected by a tether to the capacitive
sensing system [14].

In Figure 4, the FR/FA error trade-off curves are
shown for the algorithm with only 23 global features
solid line), with only the HMM log-likelihood score
dashed line) and for the same 23 features augmented
with the HMM log-likelihood score (dotted line). As
seen from Figure 4, the combination of the HMM log-
likelihood and global feature information improves the
performance in all regions of the plot when compared
to either the local or global methods used indepen-
dently. The equal error rate as seen from the figure
decreases from about 4.5% to about 2.5% with the
enhanced technique. At the 1% false rejection (FR)
point, the addition of the local information reduced
the false acceptance.

6 Summary

In this study, we have presented an on-line signa-
ture verification scheme using a hybrid technique of
global and local features. The global features cap-
tures various spatial and temporal characteristics of
the signature and the local features using the discrete
HMM capture the dynamics of signature production.
Together, they accurately model the signature vari-
ability of individuals and discriminate between valid
and forged attempts. The algorithms described here
can be used in both stand-alone point-of-sales and net-
worked applications.
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