
5DWLRQDO�&RQWURO�RI�0XOWL�OHYHO�6WRFKDVWLF�'HVLJQ

J. STORRS HALL, LOUIS STEINBERG, BRIAN D. DAVISON

Laboratory for Computer Science Research

Rutgers University, New Brunswick, NJ

 ABSTRACT

Search in a complex design space (e.g. in VLSI design) is
only feasible when it is factored into smaller ones. A
common and useful factoring is the hierarchy of
abstraction. Such problems are then attacked by linking
together stochastic search programs. At each point in the
design process it is necessary to choose whether to
continue looking for a better design at the current level, or
working further on some design at a higher or lower level.
We present a rational, i.e. utility-based, method for this
choice, together with some experiments in the domain of
VLSI placement and routing1.

INTRODUCTION

The idea of structuring the process of design as a series of
"levels of abstraction" is both appealing in theory and
important in such real-world domains as microprocessor
design. However, existing design automation in such
domains is usually restricted to single level applications,
e.g. VLSI channel routers, executed sequentially.

Design at a given level, such as module placement, often
involves search. We are motivated in the present work by
the notion that an overall control of search at all levels can
influence (and improve) the search at one level by virtue
of knowledge gained at other levels. Rational control
(Russell and Wefald, 1991) is particularly apropos to
design in that most of the work at higher abstraction levels
is done to decide which subspace to search at lower levels.

RATIONAL BLIND RANDOM SEARCH

As an example, and as a basic component in the overall
system, consider the problem of rational blind random
search. Let us assume that we are searching in a space for
which there is an evaluation function S(x) mapping objects
into some numerical range, and value function V such that
V(S(x)) is the value of object x, and the distribution of S is
known, and given by the density function D.

Furthermore let us assume that the cost to us of generating
and evaluating one object is constant, and is measured in
the same units as the valuations; we will designate it as c.

1 This work is supported by DARPA under grant number
DABT-63-93-C-0064.

Also, let z(x) be the normal density function ("bell
curve"), and define

tail F x F y dy
x

(,) ()=
∞

∫
for any function F for which it is finite.

The "standard score" of object x is
S x() − µ

σ
. Since the

scale of the range of S (the domain of V) is fairly
arbitrary, we will generally assume that S returns a
standard score in D, i.e. that µ σ= =0 1, . Further,

wherever it is clear from context, we will say “object”
instead of “standard score of the evaluation function of an
object”.

BLIND RANDOM SEARCH

A blind random search is a sequence of independent trials,
each with probabilit y p of success (the criterion of success
will be discussed later), which stops when a trial is
successful. The expected number of trials up to and
including the first success in such a sequence is 1/p.

Thus the expected effort in blind random search over a
normally distributed population to find a score better than
x is 1/tail(z,x) trials.

Now as we perform the sequence of trials, we save the
value of the best score seen so far; we will call this value
b. We define ival(x|b), the incremental value of finding a
new score x given that we have one of score b, as

ival x b V x V b(|) max(, () ())= −0 .

Let probe(V,D,b) be the value of a single blind random
probe in a population with distribution D given we have a
design of score b:

probe V D b tail D x ival x b b(, ,) (() (|),)= .

Figure 1. D(x) is the density function of the distribution of the
objects. V(x) is the value of the objects. b is the best value we
have found so far; ival gives the incremental value of finding a
new object (its value minus that of b, or zero). probe is the area
under the product of ival and D, and gives the total expected
value of a new probe, given a current best score of b.

RATIONAL RANDOM SEARCH

If the expected value of doing one more generate-and-
evaluate is greater than the cost of doing it, we should do
it; otherwise we should stop. Rational random search
(RRS) of a population of distribution D therefore consists
of evaluating elements while probe(V,D,b) > c (updating
b if appropriate after each trial).

In a case where D and c are known, we can precompute
the score (not the object) g such that probe(V,D,g)=c.
The tail of D beyond g is called the terminal region for the
search, and g is the lower bound for the score the search
will produce. Implicitly, g is a function g(V,D,c) of the
value, distribution, and cost.

RRS can be seen to be a blind search sequence
terminating with probability tail(D,g) (the probability
mass of the terminal region). Thus its expected cost is
c/tail(D,g). We can improve the implementation by
precomputing g and searching until we find a score
greater than g; there is no need to maintain b and compute
probe(V,D,b) at each step.

The expected absolute as opposed to incremental value
under the tail above x is:

tail V D x V y D y dy
x

(,) () ()⋅ =
∞

∫
The expected value EV (implicitly EV(V,D,c)) of the
search is tail(V.D,g)/tail(D,g), that is to say, the expected
value under the tail scaled up to a probability of 1. The
expected cost EC (implicitly EC(V,D,c)) is, as mentioned,
c/tail(D,g). By definition of g,

c probe V D g D x V x V g dx
g

= = −
∞

∫(, ,) ()(() ())

= −
∞∞

∫∫ D x V x dx V g D x dx
gg

() () () ()

so c = tail(V.D,g)-V(g)tail(D,g). Dividing
through by tail(D,g),

EV = EC + V(g),
for any functions V and D.

HILLCLIMBING

In spaces with a reasonable neighborhood function,
hillclimbing is a more efficient method of search than
blind random search. For example, for one typical circuit,
randomly selected layouts had a mean area of 501.3 and
standard deviation of 26.9. Hillclimbing from these
layouts cost an average 1833.6 evaluations and found an
average area of 367.3. This corresponds to a standard
score of 4.96296. Random search would have been
expected to take more than 3 million evaluations to
produce the same result.

However, we can analyze multi-start hillclimbing search
(i.e., repeated hillclimbs, each starting from a random
point in the space) as a random search in the population of
hilltops, and with a unit cost which is the expected number
of evaluations in one hillclimb times the cost of one
evaluation. The above analysis applies with each
hillclimb considered a single probe.

MULTI-LEVEL SEARCH

In our design system framework, the problem is broken
into a cascaded sequence of abstraction levels. The
objects of each level are designs that are complete in their
own terms (for example, a netlist that represents the entire
circuit being designed), but each of which could be
implemented by many possible objects at lower (more
concrete) levels.

In the following we will number the levels so that higher
(more abstract) levels have higher numbers, and lower
(more concrete) levels have lower numbers. We will refer
to objects, scores, and values an level n as n-objects, n-
scores, and n-values. For example, a placement might be
a 5-object, and have a set of routings, 4-objects,
corresponding to it.

The only value represented by any 1-object is the
expected value of the 0-level objects it lets us generate. In
particular, if the 1-score of an object gave us the
distribution of the corresponding 0-subspace (and
knowing the cost of 0-search), we could derive the
expected value at level 0 corresponding to the 1-object,
using the methods of the previous section.

CLASSICAL TOP-DOWN DESIGN

Consider classical top-down design as a baseline case.
Let us assume for the sake of argument that there is no
information to be had from designing at level n, which can
inform the design process at level n+1. That is, any n+1-
object with a given n+1-score is equivalent to any other
n+1-object with the same score in terms of the search and
design at lower levels.

We can without loss of generality use standard scores for
each level. This is because higher-level scores are
intended solely as estimates of lower-level scores, so that
if the mean or standard deviation of a higher-level
population differs from that of a lower, applying a linear
correction to the higher-level score is not only allowable
but required. We will make the further assumption that
scores are normally distributed, and that scores at adjacent
levels have joint normal distributions. Then the score-
contingent distribution at level n sDn given an n+1-score
sn+1 is normal with mean ρsn+1 and standard deviation

1 2− ρ . (ρ is the Pearson’s correlation coeff icient of

the joint normal distribution.)

Then for level 0, we can derive a g value as in the single
distribution case, for each possible score-contingent
distribution. That is, we define a function g0(s1) which is
the cutoff point for search at level 0 in the distribution
expected given we are searching below a 1-object of score
s1. Since the expected value of the search in this
distribution is EC+V(g), the overall profit of searching it
is V(g). Thus the value of having a 1-object of score s1 is
V(g0(s1)). We now define a new value function V1(s1) =
V(g0(s1)). We can now apply the same algorithm to level
1 to find a value function V2, and so forth.

For purposes of the algorithm, we will assume we have a
“root object” on+1 .

Algorithm W (waterfall, or standard top down design)
[1] Set object x=on+1 and distribution d=Dn. Set i=n.
[2] Calculate g from d, ci, and Vi.
[3] Generate objects from d until one is found with a

score higher than g. Set x to this object.
[4] If i is 0, we are done, and x is our result.
[5] Otherwise, set d to the contingent distribution at level

i-1 defined by s(x).
[6] Decrement i and go to step 2.

Algorithm W is optimal given the assumption that there is
no more information usable at level n than the score-
contingent distribution at level n-1 for any given object.

The analysis given above for rational random search at a
single level is a good example of the pitfalls of using a
“single-step” assumption. It assumes that probes are
independent. However, in the multiple-level case, while
probes at one level may be independent, probes at
different levels are very dependent, as are multi -level

sequences of probes. The only way to use the single-step
style analysis effectively here is to analyze all the
sequences of probes one might conceivably do; i.e. to
analyze algorithms.

UPWARD INFORMATION FLOW

In our experience, raw evaluations of 1-level phenomena
are almost entirely uncorrelated with raw 0-level scores
(in experiments with placement and routing). This is
ameliorated by the addition of 1-level scoring heuristics
which attempt to predict 0-level performance, as well as
including 1-level phenomena in the 0-level evaluation, as
mentioned above. These together induce a moderate
correlation (i.e. with correlation coeff icients in the
neighborhood of 0.4).

Given a specific n+1-object, we can get a better estimate
for the mean and standard deviation of its contingent
distribution at level n by sampling. This sampling has
both a cost and a value, since the means of the n+1-object-
contingent distributions vary considerably from the mean
of the corresponding score-contingent distribution. In
experiments in the placement and routabilit y levels, the
standard deviation for score-contingent distributions were
about twice those of object-contingent distributions.

This empirical observation invalidates the assumptions
that underly the optimality of the waterfall algorithm. In
fact, if the variabilit y of object-contingent distributions
within the score-contingent one if large enough, it can fail
to terminate at all. We next address that variability .

We can begin the general case by finding a g-function for
level 0 based on object-contingent distributions instead of
score-contingent ones. However, at level 1, there is no
direct correspondence between these distributions and
scores. We define a new family of distributions OVD
which are the distributions of objects at level i+1 which
have the same level i object-dependent distribution. The
score-contingent distribution at level i is the convolution
of OVD and object-contingent distribution.

The key to the analysis of sampling is to understand that
sampling is worthless unless it changes the decision we
would have made using an object’s heuristic score alone.

THE WAGES OF SIN

There are two classes of error to be considered: First,
rejecting an object whose actual score is below g but
whose “hidden true score” is above it; and second,
accepting an object whose actual is above but whose true
is below, resulting in a substandard object-contingent
distribution on the next level.

In the first case, the penalty is severe. Since we had an
acceptable search-terminating object, if only we had
known it, we will now proceed to do the entire search
again (almost) uselessly. Since the search is random, the

probes we have done to date account for nothing; the
expected cost of continuing is the same as the initial
expected cost, ci/tail(D,g). The expected value of the
improvement we get over the object we have is guaranteed
to be less than EC by definition of g.

In the second case, the contributions are reversed: we’re
saving effort (though we shouldn’ t) and getting a less
valuable result. Since the tail of OVD under
consideration this time is below g, we’re guaranteed that
the difference in value is greater than the saved search
cost.

If OVDx(y) is the OVD of actual score x and “hidden true
score” y, and V i is the backed-up value function (i.e.
V(g(object-contingent distribution))), then, for x<g, we
want to sample if

V g tail OVD g c tail V OVD gi x i i x() (,) (,)+ < ⋅−1

and therefore k, the lower bound for sampling, is the value
of x for which this is an equality; and for x>g, sample if

V x tail OVD g V g c V g tail OVD g V xi x i x() (,) () () () (),+ + < +−1

and similarly the upper-bound value h is the value of x
that makes this equal.

BACKED-UP EXPECTED PROBE COST

The overall search is now the same as in the waterfall
case, except that for the region near g where the cost of
sampling is less than the expected error cost, we sample.
For the major part of this region, the only sampling we
can afford is a single probe at level i-1; we will do a
simpli fied analysis assuming all samples are one probe.
The lower bound of the sampling region is k and the upper
bound h (k < g < h). We weight the backed-up cost bc
with the likelihood the sample will be taken:

bc c c tail k tail hn n n n n= + −−1(() ()) .

We can use this formula for cost and re-calculate g:

probe V D g c bc tail kn n n n n n(, ,) ()= + ⋅−1

and iterate until g converges. Unless OVD is very wide,
this is relatively fast, since the sampling region will
occupy a very small part of the search distribution and
thus contribute little to the cost.

Now suppose we have an n-object whose score is above k.
We evaluate one n-1-object beneath it. The resulting n-1-
score, let us call it x, tells us something about the
distribution of the n-1-objects below the n-object. The
simplest procedure, and a usable heuristic, is simply to
take x as an estimate of the n-1-distribution mean; i.e.
throw away the n-object if x is less than g, and accept it
otherwise.

RATIONAL SAMPLING

A more precise procedure is to use the standard statistical
sampling estimates of the n-1-distribution given by x and
possible subsequent samples. The sampling can continue
as long as the cost of the next sample is less than the
remaining cost due to error given the distribution as
determined by the samples taken thus far. The main
phenomenon is that as we sample, we know more, so
OVD, the expected variabilit y in object-contingent
distributions, shrinks.

OVD gives us the probabilit y the real object-contingent
distribution (OCD) will be centered at point x (More
precisely, within dy/2 of x, p = OVDx(y)dy. The dy' s can
be carried through the entire computation and then cancel
out, so we will i gnore them in the following). The score-
contingent distribution SCDx is the convolution of OVDx
and OCD. It gives us the ab initio probabilit y of finding a
sample at point x.

If d is the event of finding OCD centered at point x, and s
is the event of finding a sample (whose score we shall also
designate s), p(d|s) is a function of x giving the probabilit y
of OCD being there given the sample s. I.e. it is what
OVD should look like given the sample. Using Bayes'
theorem twice,

p d s
p s d p d

p s
(|)

(|) ()

()
= , i.e.,

OCD s OVD

SCD s
x x

x

()

()

(where OCDx(s) means the value at s of the OVD centered
at x). Note that the numerator is a product of functions
and the denominator is a constant.

Thus to get the new OVD we need only multiply the old
one times a function that is the OCD shifted to and
reflected about the sample, and divide by the value of
SCD at the sample.

The only proviso is that for a possible second sample, the
true prior isn' t the original SCD any more, but rather the
convolution of OCD and the new OVD from the first
sample. Let us call the appropriate true prior, which
represents the best estimate of the actual distribution we
have, D.

GENERALIZING MULTI-LEVEL SAMPLING

The major problem with full sampling is that the nearer
the “secret score” of x to g, the more sample probes will
be necessary to determine on which side it really is. This
can be largely ameliorated by the expedient of using the
same probes for sampling and the next level of search.
This means that we will pay sampling costs for only those
candidates we ultimately reject; probes for successful
samples will be charged to the account of the next level.

To this end we can compute a g value for D, the best
estimate of the sampled distribution. If the value

V i-1(g(D)) > Vi(gi),

the sample indicates the current i-level candidate is good,
since after all V i is defined as an estimate of V i-1 for g of
the distribution we expect to be searching.

As long as V i-1(g(D)) > V i(gi), then, we should continue
sampling/searching. If a probe falls above g(D), we
should accept in the waterfall sense at level i-1.

If V i-1(g(D)) falls below V i(gi), we abandon the i-level
candidate and continue the search at level i.

ALGORITHM FOR SAMPLING SEARCH

First we calculate the value functions Vi for each level as
in the waterfall case: for level 0, we derive a g value for
each possible object-contingent distribution. Again the
expected value of the search in this distribution is
EC+V(g), and the overall profit of searching it is V(g).
The value of having a 1-object with a true hidden score s1

is V(g0(s1)), and thus the value of having an object with

actual score s1 is OVD x V g x dxs1 0() (())
−∞

∞

∫ . To

define the new value function V1(s1) we can therefore
convolve V(g0(x)) with OVDs(x). We can now apply the
same algorithm to level 1 to find a value function V2, and
so forth. We will again use a virtual on+1 as an ancestor of
the total level-n distribution to simpli fy the algorithm. We
will use a vectors g[] , h[] , k[] , p[] , and d[] to hold the
active values for each level.

Algorithm S (multi-level design with sampling)
[1] Set object p[n]=on+1 and distribution d[n]=Dn. Set

i=n, and bci=ci. Set g[n+1] to minus infinity.
[2] Generate an object from p[i]; call it x.
[3] Calculate a new d[i] using the method of section 7.
[4] Calculate g[i] from d[i], bci, and V i. Calculate h[i]

and k[i] using the method of section 5. (h=k=g if i=0.)
[5] Calculate a new bci using h and k in the method of

section 6. Repeat [4] and [5] until the new g[i] is
acceptably close to the previous one.

[6] If V i(g[i])<V i+1(g[i+1]), set i=i+1 and go to [2].
[7] If s(x)<k[i] goto [2].
[8] If i is 0, we are done, and x is our result.
[9] Otherwise, set i=i-1, p[i] to x, d[i] to SCDi(s(x)). Go

to 2.

Algorithm S ameliorates the inabilit y of Algorithm W to
handle object-contingent variabilit y. It should be noted,
however, that it relies on the assumption that the OCDs
are the same shape and differ only in their means.

IMPLEMENTATION AND EXPERIMENTS

Our present experiments deal with an abstraction
hierarchy in VLSI layout. The following work concerns
placement and routing. Our goal is to take a netlist and
find a placement for the modules that is both compact in

and of itself, and which allows for an eff icient routing of
the wires between their specified ports.

A common representation for placement at this level is a
slicing structure, which corresponds to a partition tree. In
addition to the partitions, the layout contains information
regarding orientation and reflection of the subtrees at each
node. We separate the representation into an "abstract
placement", which consists of the partition tree and the
orientation information, and the "concrete placement",
which adds the reflection information to an abstract
placement.

The size and shape of the overall l ayout is determined by
the abstract placement; concrete placements for a given
abstract one have a wide variation in wirability.

Since the area of the chip is a prime concern and is the
major phenomenon of interest at level 1, total area was the
primary level 1 evaluation function. At level 0 we are
concerned with the nearness of modules that have
connections between them.

CORRELATION BETWEEN LEVELS

After beginning with the two-level, iterated hill climb
model, it became clear that the correlation between the
spaces was very important. The catch is that the
information that determines the level 0 value simply isn't
present at level 1; it hasn't been decided yet. This property
extends to every level in an abstraction hierarchy and is
thus an intrinsic part of the problem.

Our approach was first to invent a heuristic at level 1 that
estimates the wireabilit y at level 0 from the tree structure.
We refer to this as the "channel heuristic" and it
essentially measures the distance in the slicing structure
tree of modules that are connected. (Each net corresponds
to a specific subtree.) Secondly we adopted the overall
requirement that lower-level values must dominate. This
meant that full account of area must be taken by the level
0 evaluation that previously only counted wires. (Since
the area is already known, this simply means adding it.)

Before the adoption of these techniques, the correlation
between level 1 and 0 scores was statistically
indistinguishable from 0. Afterward, it increased to about
0.4, which is adequate. It is a point of concern, and one
not yet completely established, how the correlation
coeff icient varies with the particular circuit being
designed. It is the most diff icult of the statistics we use to
estimate reliably on the fly. Even with a sample size of
1000 (10-module circuits) the value of 0.39 has a 95%
confidence interval of 0.36 to 0.42. For 411 30-module
circuits the value was 0.41 with a confidence interval that
completely includes the other confidence interval. This is
hardly proof, but is a heartening early indication that the
correlation coeff icient does not vary significantly with the
specific circuit.

Figure 2. Bivariate distribution for level 0 and 1 heuristics for
1000 10-module circuits. Both axes are standard scores. The
outliers to the left are caused by the sparsity of the level 1 space;
they represent hilltops converged to by several separate random-
start hillclimbs. This phenomenon disappears as circuit
complexity increases.

Figure 3. Distribution for 411 circuits with 30 modules. As
circuit complexity increases, the distributions become more
nearly normal, but the correlation coefficient does not appear to
change significantly.

RELATED WORK

Russell and Wefald [91] is the prime reference in rational
control. Their analysis of partially expanded nodes for
MGSS2 is similar in many respects to the present one.

SUMMARY AND CONCLUSIONS

Multi-start hillclimbing can be analyzed as random search
in the space of hilltops.

Rational random search in a population with a given
distribution, probe cost, and value function has a lower
bound g on its expected result that can be precalculated

and the search run without dynamic cost/benefit
computation.

The expected value of such a search is its expected cost
plus the value of the score g.

Rational search in abstraction hierarchies for design is
aided by knowledge of the correlation of the value
distributions at adjacent levels. These correlations can be
enhanced by appropriate heuristic evaluation functions
and a formulation of the hierarchy such that lower level
evaluations dominate higher level ones.

The statistical properties of the microprocessor design
domain, at least in the placement and routing area, are
well behaved enough for the approach to be useful. The
properties improve as problem sizes approach those of
commercial interest.

Rational control of search in design hierarchies can cause
higher levels to modify their behavior based on
information that arises from lower levels, ameliorating a
major weakness of top-down design.

Dynamic rational control of multi-level design is likely to
be worthwhile because of the high computational demands
of the domain itself. This will be enhanced by efficient
implementations of various integrals of density and value
functions. Heuristic simplifications of multi-level rational
control are possible, have been tested, are efficient, and
work reasonably well.

REFERENCES

1. Hennessy, John, and Patterson, David:
Computer Architecture: A Quantitative
Approach, Morgan Kaufman, San Mateo CA,
1990

2. Russell, Stuart and Norvig, Peter: Artificial
Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs NJ, 1995

3. Russell, Stuart and Wefald, Eric: Do the Right
Thing: Studies in Limited Rationality, MIT
Press, Cambridge MA, 1991

4. Sherwani, Naveed: Algorithms for VLSI
Physical Design Automation, Kluwer Academic
Publishers, Boston, 1995

