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ABSTRACT

Search in a complex design space (e.g. in VLSI design) is
only feasible when it is factored into smaller ones. A
common and useful factoring is the hierarchy of
abstraction. Such problems are then attacked by linking
together stochastic search programs. At each point in the
design process it is necessary to choose whether to
continue looking for a better design at the current level, or
working further on some design at a higher or lower level.
We present a rational, i.e. utility-based, method for this
choice, together with some experiments in the domain of
VLSI placement and routing™.

INTRODUCTION

The idea of structuring the process of design as a series of
"levels of abstraction" is both appealing in theory and
important in such real-world domains as microprocessor
design. However, existing design automation in such
domains is usually restricted to single level applications,
e.g. VLSI channel routers, executed sequentially.

Design at a given level, such as module placement, often
involves search. We are mativated in the present work by
the notion that an overall control of search at al levels can
influence (and improve) the search at one level by virtue
of knowledge gained at other levels. Rational control
(Russell and Wefald, 1991) is particularly apropos to
design in that most of the work at higher abstraction levels
is done to decide which subspace to search at lower levels.

RATIONAL BLIND RANDOM SEARCH

As an example, and as a basic component in the overall
system, consider the problem of rationa blind random
search. Let us assume that we are searching in a space for
which there is an evaluation function S(x) mapping objects
into some numerical range, and value function V such that
V(S(X)) isthe value of object x, and the distribution of Sis
known, and given by the density function D.

Furthermore let us assume that the cost to us of generating
and evaluating one object is constant, and is measured in
the same units as the valuations; we will designate it as c.
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Also, let z(xX) be the norma density function (“"bell
curve"), and define

tail (F, x) = [ F(y)dy

for any function F for which it isfinite.

The "standard score” of object x is XX "H gnce the
o

scde of the range of S (the domain of V) is fairly
arbitrary, we will generaly asume that S returns a
standard score in D, i.e. that U =0,0 =1. Further,

wherever it is clea from context, we will say “objed”
instead of “standard score of the evaluation function of an
object”.

BLIND RANDOM SEARCH

A blind random seach is a sequence of independent trials,
ead with probability p of success(the aiterion of success
will be discussed later), which stops when a trid is
succesdul. The epeded number of trials up to and
including the first success in such a sequencepis 1

Thus the expeded effort in blind random seach over a
normally distributed population to find a score better than
x is Wtail(zx) trials.

Now as we perform the sequence of trials, we save the
value of the best score seen so far; we will cdl this value
b. We define ival(x|b), the incremental value of finding a
new score given that we have one of scdreas

ival (x|b) = max(0,V (x) -V (b)) .

Let probe(V,D,b) be the value of a singe blind random
probe in a population with distribution D given we have a
design of scoré:

probe(V, D,b) = tail (D(x)ival (x|b),b) .



Typical D(xX) Typical V()

ival(x 1 b)

probe(V,D.b)

Figure 1. D(x) isthe density function of the distribution of the
objects. V(x) is the value of the objects. b is the best value we
have found so far; ival gives the incrementa value of finding a
new object (its value minus that of b, or zero). probeisthe area
under the product of ival and D, and gives the total expected
value of anew probe, given a current best score of b.

RATIONAL RANDOM SEARCH

If the expected value of doing one more generate-and-
evaluate is greater than the cost of doing it, we should do
it; otherwise we should stop. Rational random search
(RRS) of a population of distribution D therefore consists
of evaluating elements while probe(V,D,b) > ¢ (updating
b if appropriate after each trial).

In a case where D and c are known, we can precompute
the score (not the object) g such that probe(V,D,g)=c.
Thetail of D beyond g is called the terminal region for the
search, and g is the lower bound for the score the search
will produce. Implicitly, g is a function g(V,D,c) of the
value, distribution, and cost.

RRS can be seen to be a blind search sequence
terminating with probability tail(D,g) (the probability
mass of the terminal region). Thus its expected cost is
c/tail(D,g). We can improve the implementation by
precomputing g and searching until we find a score
greater than g; there is no need to maintain b and compute
probe(V,D,b) at each step.

The expected absolute as opposed to incremental value
under thetail abovexis:

tail(v [D,x) = [V (y) D(y)dy

The expected value EV (implicitly EV(V,D,c)) of the
search is tail(V.D,g)/tail(D,g), that is to say, the expected
value under the tail scaled up to a probability of 1. The
expected cost EC (implicitly EC(V,D,c)) is, as mentioned,
c/tail(D,g). By definition of g,

¢:= probe(V, D, g) = [ D(x)(V(x) -V (g))dx

= [ DOV (e =V(g)[ D(x)dx

s ¢ = tail(V.D,g)-V(g)tail(D,g). Dividing
through by tail(D,qg),

EV = EC + \(q),

for any functionsV and D.

HILLCLIMBING

In spaces with a reasonable neighborhood function,
hillclimbing is a more efficient method of search than
blind random search. For example, for one typical circuit,
randomly selected layouts had a mean area of 501.3 and
standard deviation of 26.9. Hillclimbing from these
layouts cost an average 1833.6 evaluations and found an
average area of 367.3. This corresponds to a standard
score of 4.96296. Random search would have been
expected to take more than 3 million evaluations to
produce the same result.

However, we can analyze multi-start hillclimbing search
(i.e., repeated hillclimbs, each starting from a random
point in the space) as a random search in the popul ation of
hilltops, and with a unit cost which is the expected number
of evaluations in one hillclimb times the cost of one
evaluation. The above analysis applies with each
hillclimb considered a single probe.

MULTI-LEVEL SEARCH

In our design system framework, the problem is broken
into a cascaded sequence of abstraction levels. The
objects of each level are designs that are complete in their
own terms (for example, a netlist that represents the entire
circuit being designed), but each of which could be
implemented by many possible objects at lower (more
concrete) levels.

In the following we will number the levels so that higher
(more abstract) levels have higher numbers, and lower
(more concrete) levels have lower numbers. We will refer
to objects, scores, and values an level n as n-objects, n-
scores, and n-values. For example, a placement might be
a 5-object, and have a set of routings, 4-objects,
corresponding to it.

The only value represented by any 1-object is the
expected value of the O-level objectsit lets us generate. In
particular, if the 1-score of an object gave us the
distribution of the corresponding O-subspace (and
knowing the cost of O-search), we could derive the
expected value at level O corresponding to the 1-object,
using the methods of the previous section.



CLASSICAL TOP-DOWN DESIGN

Consider clasgcd top-down design as a baseline cae.
Let us assume for the sake of argument that there is no
information to be had from designing at level n, which can
inform the design processat level n+1. That is, any n+1-
objed with a given n+1-score is equivalent to any other
n+1-objeda with the same score in terms of the search and
design at lower levels.

We can without lossof generality use standard scores for
eat level. This is becaise higher-level scores are
intended solely as estimates of lower-level scores, so that
if the mean or standard deviation of a higher-level
population differs from that of a lower, applying a linea
corredion to the higher-level score is not only allowable
but required. We will make the further assuumption that
scores are normally distributed, and that scores at adjacent
levels have joint normal distributions. Then the score-
contingent distribution at level n D, given an n+1-score

Sw1 1S normal with mean PS,,; and standard deviation

F1- p2 . (p isthe Peason’s correlation coefficient of
the joint normal distribution.)

Then for level 0, we can derive ag value & in the single
distribution case, for ead possble score-contingent
distribution. That is, we define afunction go(s;) which is
the autoff point for seach at level 0 in the distribution
expeded given we ae seaching below a 1-objed of score
5. Since the epeded value of the seach in this
distribution is EC+V(g), the overall profit of searching it
isV(g). Thusthe value of having a 1-objed of score s; is
V(go(s1)). We now define anew value function V(s) =
V(go(s1)). We can now apply the same dgorithm to level
1 to find a value function )/ and so forth.

For purposes of the dgorithm, we will assume we have a
“root object” Q41 .

Algorithm W (waterfall, or standard top down design)

[1] Set objeck=0,.; and distributiord=D,. Seti=n.

[2] Calculateg fromd, ¢, and V.

[3] Generate objeds from d until one is found with a
score higher thag. Setx to this object.

[4] If iis 0, we are done, arxds our result.

[5] Otherwise, set d to the cmntingent distribution at level
i-1 defined by s().

[6] Decrement and go to step 2.

Algorithm W is optimal given the assumption that there is
no more information usable & level n than the score-
contingent distribution at level1 for any given object.

The analysis given above for rational random seach at a
singe level is a good example of the pitfalls of using a
“singe-step” asumption. It asumes that probes are
independent. However, in the multiple-level case, while
probes at one level may be independent, probes at
different levels are very dependent, as are multi-level

seguences of probes. The only way to use the single-step
style aaysis effedively here is to analyze dl the
seguences of probes one might conceivably do; i.e. to
analyze algorithms.

UPWARD INFORMATION FLOW

In our experience, raw evaluations of 1-level phenomena
are dmost entirely uncorrelated with raw O-level scores
(in experiments with placanent and routing). This is
ameliorated by the aldition of 1-level scoring heuristics
which attempt to predict O-level performance, as well as
including 1-level phenomena in the O-level evaluation, as
mentioned above. These together induce a moderate
correlation (i.e. with correlation coefficients in the
neighborhood of 0.4).

Given a spedfic n+1-objed, we can get a better estimate
for the mean and standard deviation of its contingent
distribution at level n by sampling. This smpling has
both a st and avalue, sincethe means of the n+1-objed-
contingent distributions vary considerably from the mean
of the rresponding score-contingent distribution. In
experiments in the placement and routability levels, the
standard deviation for score-contingent distributions were
about twice those of object-contingent distributions.

This empiricd observation invalidates the asumptions
that underly the optimality of the waterfall algorithm. In
fad, if the variability of objed-contingent distributions
within the score-contingent one if large exough it can fail
to terminate at all. We next address that variability .

We can begin the general case by finding a g-function for
level 0 based on objed-contingent distributions instead of
score-contingent ones. However, at level 1, there is no
dired correspondence between these distributions and
scores. We define anew family of distributions OVD
which are the distributions of objeds at level i+1 which
have the same level i objed-dependent distribution. The
score-contingent distribution at level i is the cnvolution
of OVD and object-contingent distribution.

The key to the analysis of sampling is to understand that
sampling is worthless unless it changes the dedsion we

would have made using an object’s heuristic score alone.

THE WAGES OF SIN

There ae two classes of error to be mnsidered: Firdt,
rejeding an objed whose adua score is below g but
whose “hidden true score” is above it; and seoond,
acceting an objed whose adual is above but whose true
is below, resulting in a substandard oljed-contingent
distribution on the next level.

In the first case, the penalty is ®vere. Since we had an
accetable seach-terminating objed, if only we had
known it, we will now proceal to do the ettire seach
again (almost) uselesdy. Since the seach is random, the



probes we have done to date acount for nothing, the
expeded cost of continuing is the same & the initial
expeded cost, ¢/tail(D,g). The expeded value of the
improvement we get over the objed we have is guaranteed
to be less than EC by definition gf

In the second case, the @ntributions are reversed: we're
saving effort (though we shouldn’t) and getting a less
valuable result. Since the tall of OVD under
consideration this time is below g, we're guaranteed that
the difference in value is greater than the saved seach
cost.

If OVD,(y) isthe OVD of adual score x and “hidden true
score” y, and V; is the badked-up value function (i.e.
V(g(objed-contingent distribution))), then, for x<g, we
want to sample if

V,(g)tail(OVD,,g) +¢_, <tail(V; [OVD,, Q)

and therefore k, the lower bound for sampling, is the value
of x for which this is an equality; and fgeg, sample if

Vi () +tail (OVD,, g\V(g) +6, <V(g) +tal (OVD, g)V(x)

and similarly the upper-bound value h is the value of x
that makes this equal.

BACKED-UP EXPECTED PROBE COST

The overal seach is now the same & in the waterfall
case, except that for the region nea g where the st of
sampling is lessthan the expeded error cost, we sample.
For the major part of this region, the only sampling we
can afford is a singe probe & level i-1; we will do a
simplified analysis asauming all samples are one probe.
The lower bound of the sampling region is k and the upper
bound h (k < g < h). We weight the badked-up cost bc
with the likelihood the sample will be taken:

bc, =c, +c,(tail(k,) —tail(h)) .
We can use this formula for cost and re-calcuate
probe(V,,D,,q,) =c, +bc. _, Hail(k,)

and iterate until g converges. UnlessOVD is very wide,
this is relatively fast, since the sampling region will
occupy a very small part of the seach distribution and
thus contribute little to the cost.

Now suppcse we have an n-objed whose score is above k.
We evaluate one n-1-objed beneah it. The resulting n-1-
score, let us cdl it x, tells us mething about the
distribution of the n-1-objeds below the n-objea. The
simplest procedure, and a usable heuristic, is smply to
take x as an estimate of the n-1-distribution mean; i.e.
throw away the n-objed if x is lessthan g, and accept it
otherwise.

RATIONAL SAMPLING

A more predse procedure is to use the standard statistica
sampling estimates of the n-1-distribution gven by x and
possble subsequent samples. The sampling can continue
as long as the st of the next sample is less than the
remaining cost due to error given the distribution as
determined by the samples taken thus far. The main
phenomenon is that as we sample, we know more, so
OVD, the epeded variability in objed-contingent
distributions, shrinks.

OVD gives us the probability the red objed-contingent
distribution (OCD) will be cetered at point x (More
predsely, within dy/2 of x, p = OVD,(y)dy. Thedy' scan
be caried throughthe entire computation and then cance
out, so we will i gnore them in the following). The score-
contingent distribution SCD,, is the cnvolution of OVDx
and OCD. It gives us the ab initio probability of finding a
sample at poirnt.

If disthe event of finding OCD centered at point x, and s
isthe event of finding a sample (whose score we shall also
designate s), p(d|s) is afunction of x giving the probability
of OCD being there given the sample s. l.e. it is what
OVD should look like given the sample. Using Bayes
theorem twice,

p(d|s) = p(sd) p(d) o OCD, (s)OVD,
e D,

(where OCD,(s) means the value & s of the OVD centered
at x). Note that the numerator is a product of functions
and the denominator is a constant.

Thus to get the new OVD we need only multiply the old
one times a function that is the OCD shifted to and
refleded about the sample, and dvide by the value of
SCD at the sample.

The only proviso is that for a possble second sample, the
true prior isn' t the original SCD any more, but rather the
convolution of OCD and the new OVD from the first
sample. Let us cdl the gpropriate true prior, which
represents the best estimate of the adual distribution we
have, D.

GENERALIZING MULTI-LEVEL SAMPLING

The major problem with full sampling is that the neaer
the “seaet score” of x to g, the more sample probes will
be necessary to determine on which side it redly is. This
can be largely ameliorated by the expedient of using the
same probes for sampling and the next level of seach.
This means that we will pay sampling costs for only those
candidates we ultimately rejed; probes for succesdul
samples will be charged to the account of the next level.

To this end we can compute ag value for D, the best
estimate of the sampled distribution. If the value



Via(9(D)) > Vi(g),

the sample indicaes the arrent i-level candidate is good,
since dter al V; is defined as an estimate of V,.; for g of
the distribution we expect to be searching.

As long as V;.1(g(D)) > Vi(g;), then, we should continue
sampling/seaching. If a probe fals above g(D), we
should accept in the waterfall sense at level i-1.

If Vi1(g(D)) fals below Vi(g), we aandon the i-level
candidate and continue the search at level i.

ALGORITHM FOR SAMPLING SEARCH

First we cdculate the value functions V; for ead level as
in the waterfall case: for level 0, we derive ag value for
eat possble object-contingent distribution. Again the
expeded value of the seach in this distribution is
EC+V(g), and the overall profit of seaching it is V(g).
The value of having a 1-objed with a true hidden score s;
is V(go(sy), and thus the value of having an objed with

adua score sl is f OVD, (X)V(g,(X)dx. To

define the new value function V,(s;) we can therefore
convolve V(go(X)) with OVD4(x). We can now apply the
same dgorithm to level 1 to find a value function V,, and
so forth. We will again use avirtual o,.; as an ancestor of
the total level-n distribution to simplify the dgorithm. We
will use avedors g[], h[], K[], p[], and d] to hold the
active values for each level.

Algorithm S (multi-level design with sampling)

[1] Set objed p[n]=0,.1 and dstribution d[n]=D,. Set
i=n, andbg=c,.. Set g[n+1] to minus infinity.

[2] Generate an object fromip[call it x.

[3] Calculate a new d[using the method of section 7.

[4] Calculate g[i] from d[i], bc;, and V;. Caculate h[i]
and Kj] using the method of section fi#k=g if i=0.)

[5] Calculate anew bc; using h and k in the method d
sedion 6. Reped [4] and [5] urtil the new ¢[i] is
acceptably close to the previous one.

[6] If Vi(g[i)<V is(gli+1]), seti=i+1 and go to [2].

[7] If s(x)<K[i] goto [2].

[8] If iis 0, we are done, arxds our result.

[9] Otherwise, set i=i-1, p[i] to x, d[i] to SCD;(s(x)). Go
to 2.

Algorithm S ameliorates the inability of Algorithm W to

handle objed-contingent variability. It should be noted,

however, that it relies on the asaumption that the OCDs

are the same shape and differ only in their means.

IMPLEMENTATION AND EXPERIMENTS

Our present experiments ded with an abstradion
hierarchy in VLS| layout. The following work concerns
placement and routing. Our goal is to take anetlist and
find a placement for the modules that is both compad in

and o itself, and which alows for an efficient routing of
the wires between their specified ports.

A common representation for placement at this level is a
dlicing structure, which corresponds to a partition tree In
addition to the partitions, the layout contains information
regarding orientation and refledion of the subtrees at eah
node. We separate the representation into an "abstrad
placement”, which consists of the partition tree ad the
orientation information, and the "concrete placament”,
which adds the refledion information to an abstrad
placement.

The size and shape of the overall layout is determined by
the éstrad placement; concrete placements for a given
abstract one have a wide variationimability.

Since the aeaof the chip is a prime concern and is the
major phenomenon of interest at level 1, total areawas the
primary level 1 evaluation function. At level 0 we ae
concerned with the neaness of modules that have
connections between them.

CORRELATION BETWEEN LEVELS

After beginning with the two-level, iterated hill climb
model, it becane dea that the crrelation between the
spaces was very important. The cdch is that the
information that determines the level 0 value simply isn't
present at level 1; it hasn't been dedded yet. This property
extends to every level in an abstradion hierarchy and is
thus an intrinsic part of the problem.

Our approach was first to invent a heuristic & level 1 that
estimates the wireability at level 0 from the tree structure.
We refer to this as the "channel heuristic' and it
esentially measures the distance in the dicing structure
treeof modules that are cmnneded. (Each ret corresponds
to a spedfic subtree) Seocondly we alopted the overall
requirement that lower-level values must dominate. This
meant that full acount of areamust be taken by the level
0 evaluation that previously only counted wires. (Since
the area is already known, this simply means adding it.)

Before the alogtion of these techniques, the crrelation
between level 1 and O scores was datisticdly
indistinguishable from 0. Afterward, it increased to about
0.4, which is adequate. It is a paint of concern, and one
not yet completely established, how the crrelation
coefficient varies with the particular circuit being
designed. It isthe most difficult of the statistics we use to
estimate reliably on the fly. Even with a sample size of
1000 (10-module drcuits) the value of 0.39 has a 95%
confidence interval of 0.36 to 0.42. For 411 3Gmodule
circuits the value was 0.41 with a confidence interval that
completely includes the other confidenceinterval. Thisis
hardly prodf, but is a heatening ealy indication that the
correlation coefficient does not vary significantly with the
specific circuit.
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Figure 2. Bivariate distribution for level 0 and 1 heuristics for
1000 10-module circuits. Both axes are standard scores. The
outliersto the left are caused by the sparsity of the level 1 space;
they represent hilltops converged to by severa separate random-
start hillclimbs.  This phenomenon disappears as circuit
complexity increases.
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Figure 3. Distribution for 411 circuits with 30 modules. As
circuit complexity increases, the distributions become more
nearly normal, but the correlation coefficient does not appear to
change significantly.

RELATED WORK

Russell and Wefald [91] is the prime reference in rational
control. Their analysis of partially expanded nodes for
MGSS2 is similar in many respects to the present one.

SUMMARY AND CONCLUSIONS

Multi-start hillclimbing can be analyzed as random search
in the space of hilltops.
Rational random search in a population with a given

distribution, probe cost, and value function has a lower
bound g on its expected result that can be precalculated

and the search run without dynamic cost/benefit
computation.

The expected value of such a search is its expected cost
plus the value of the score g.

Rational search in abstraction hierarchies for design is
aided by knowledge of the correlation of the value
distributions at adjacent levels. These correlations can be
enhanced by appropriate heuristic evaluation functions
and a formulation of the hierarchy such that lower level
evaluations dominate higher level ones.

The datistical properties of the microprocessor design
domain, at least in the placement and routing area, are
well behaved enough for the approach to be useful. The
properties improve as problem sizes approach those of
commercial interest.

Rational control of search in design hierarchies can cause
higher levels to modify their behavior based on
information that arises from lower levels, ameliorating a
major weakness of top-down design.

Dynamic rational control of multi-level design is likely to
be worthwhile because of the high computational demands
of the domain itself. This will be enhanced by efficient
implementations of various integrals of density and value
functions. Heuristic simplifications of multi-level rational
control are possible, have been tested, are efficient, and
work reasonably well.
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