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Abstract

Hierarchical Task Network planning is a fast and highly expressive formalism for

problem solving, but systems based on this formalism depend on the existence of

domain-specific knowledge constructs (methods) describing how and in what circum-

stances complex tasks may be reduced into simpler tasks in order to solve problems.

Writing and debugging a set of methods for a new domain has in the past been a

difficult and error-prone manual process. This dissertation presents and evaluates

a framework in which HTN methods can be automatically learned from a classi-

cal planning domain description, a set of example pairs of planning states from

that domain with plans applicable in those states, and a set of annotated tasks for

that domain. Annotated task are task symbols with associated preconditions and

postconditions describing what it means to accomplish those tasks.

The primary algorithm based on this framework is HTN-Maker, which works

by searching the input plans for subplans over which an annotated task has been

accomplished and using goal regression to build a recursive series of explanations

of how the task was accomplished. Each of these explanations becomes a method

stating that the task may be reduced into its subtasks and giving conditions under

which this will be valid. These methods that have been learned can then be used

by an HTN planner to solve HTN planning problems.

The implementation of the HTN-Maker algorithm has a number of config-

urable options and design decisions relating to such questions as how subtasks

should be grouped together, how constants should be generalized into variables,

and whether or not effort should be expended in discovering and pruning unneces-

sary methods. Theoretical results show that if the system is configured properly,
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the methods learned by HTN-Maker will accurately model the annotated tasks

from which they were learned. They also show that, from a finite number of exam-

ples, HTN-Maker is capable of learning a set of methods for a domain that can

be used to solve all solvable problems in that domain that can be expressed using

the provided annotated tasks. There are HTN planning problems that cannot be

expressed using annotated tasks, and thus cannot be solved using methods learned

by HTN-Maker, but there are also non-classical problems that can be solved using

the methods learned by HTN-Maker.

HTN-MakerND is an extension of HTN-Maker that learns methods that will

be effective in domains in which actions do not have deterministic effects. It does

so by learning methods with a carefully chosen structure that maximizes flexibility

when using those methods. Q-Maker is an extension of HTN-Maker that learns

both methods and estimated values of those methods intended to guide a planner

toward a near-optimal plan quickly. A further algorithm, Q-Reinforce, uses rein-

forcement learning to refine these method values through planning experience, and

Q-Shop uses the methods and values to solve planning problems, preferring to use

methods with higher values when given a choice.

Experimental results in several benchmark planning domains explore the con-

sequences of several of the options and design decisions in HTN-Maker on the

amount of useful knowledge it is able to extract from examples and on the speed of

planning with the methods that it learns. The evaluation demonstrates that both

HTN-Maker and HTN-MakerND are able to learn knowledge that generalizes

well to new problems. In four of five deterministic domains and both nondeterminis-

tic domains, planning with the learned methods is much faster than non-HTN plan-

ning. Q-Shop using methods learned by Q-Maker and refined by Q-Reinforce

produces plans that are of higher quality than those produced by traditional sat-

isficing planners while still running much more quickly than an optimal planner in

both domains in which it was tested.
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Chapter 1

Introduction

There have been great advances in the field of artificial intelligence through the last

sixty years, and systems that employ artificial intelligence impact the lives of citizens

of developed nations on a daily basis. Navigation systems assist drivers in finding

unfamiliar locations or routing around unexpected obstacles, autonomous vacuum

cleaners clean homes while their owners are away, and search engines direct a user

to information sources that precisely match her query. Artificial intelligence has

been used to improve activities as important as diagnosing disease and as frivolous

as playing chess or Jeopardy!.

In spite of these unqualified successes, there remain many human endeavors in

which artificial intelligence technology has not been leveraged, although it would

surely be beneficial. This is in part because traditional, symbolic artificial intelli-

gence systems are knowledge-intensive. The proliferation of the Internet has meant

that data is readily available, but knowledge is something more: a context for data,

or a theory explaining anecdotes, and is much rarer. There are many exceptions,

but knowledge must often be created or curated by a human expert, in a process

known as knowledge engineering.

One field of symbolic artificial intelligence that has generated persistent interest

throughout the age of artificial intelligence is automated planning, the process by

which a machine can reason about actions that it might take to devise a plan that

will achieve the system’s goals. Traditionally, automated planning systems have
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CHAPTER 1. INTRODUCTION

required knowledge in the form of formal descriptions of actions that specify what

must be true before an action may be taken (preconditions) and how taking that

action will change the world (effects). These formal descriptions typically represent

the state of the world and preconditions and effects of actions using the language of

first-order logic.

Producing the knowledge constructs representing actions is usually only a mod-

erately difficult process, but more knowledge generally produces more useful sys-

tems. Domain-configurable planning paradigms allow or require the use of additional

domain-specific knowledge, such as structural properties of the domain or domain-

specific problem-solving strategies. This knowledge allows domain-configurable plan-

ners to be potentially much more useful than traditional, domain-independent plan-

ners, but greatly increases the knowledge engineering burden.

Hierarchical Task Network (HTN) planning is one of the most well-known domain-

configurable planning paradigms. The most common type of HTN planner does not

have explicit state-based goals to achieve; rather it has tasks that it wishes to accom-

plish. It does so by using an additional knowledge structure, known as a method.

A method consists of a task that it is working toward (the head), a description of

what must be true before the method may be used (preconditions), and a series of

tasks that, if they are accomplished, will result in the head task being accomplished

(subtasks). The lowest-level (primitive) tasks correspond to actions that can be per-

formed directly, and an HTN planner continues using methods to reduce complex

tasks into subtasks until all remaining tasks are primitive.

Shop [63] and its successor Shop2 [62] have been the most widely used HTN

planning systems over the last decade. Because methods encode a great deal of

knowledge about a domain, Shop and Shop2 are capable of solving problems much

more quickly than classical planners, so much so that a separate track has been

created for domain-configurable planners at the international planning competitions.

Because tasks are more general than explicit goals, HTN planners are capable

of solving problems that cannot even be expressed in the language of classical plan-

ners. Furthermore, it is theorized that humans naturally solve complex problems

by breaking them down into simpler problems as an HTN planner does [47]. As a

4



result, HTN planning has proven to be an effective framework for modeling many

real-world applications, including military tactics [55, 59], strategy formulation in

computer games [27], manufacturing processes [64], project management [95], and

story-telling [7].

Countering these significant benefits of the HTN planning formalism is the re-

quirement of the additional knowledge structure, methods. Without them, an HTN

planner will be incapable of solving any problems. Developing and debugging a set

of HTN methods that will allow an HTN planner to efficiently solve problems in

a domain has been a challenging manual task, requiring someone who is both an

expert in the domain being modeled and an expert in the planning formalism. This

process must be repeated, from scratch, for any new domain in which one would

like to use an HTN planner.

To alleviate this knowledge engineering burden, several researchers have studied

techniques in which hierarchical knowledge for planning could be learned automat-

ically. Most of these works require that some type of knowledge be provided by a

human beyond the preconditions and effects of actions. In some cases this means

axiomatic concepts [47, 66], in others the desired relationships between tasks and

subtasks [95, 32], and so forth.

This dissertation presents a new framework for learning hierarchical planning

knowledge without these requirements, Hierarchical Task Networks with Minimal 1

Additional Knowledge Engineering Required (HTN-Maker) 2. The HTN-Maker

framework requires only that a human list what the tasks are that the planner should

learn how to accomplish and for each what it means to accomplish that task, through

a knowledge structure called an annotated task. HTN-Maker searches through

example plans to find subplans through which a task had been accomplished. It

then analyzes those subplans, using a hierarchical extension to goal regression to

1The knowledge requirements of HTN-Maker are not necessarily minimal in a formal, math-

ematical sense.
2Source code for HTN-Maker and related algorithms is available at

http://www.cse.lehigh.edu/InSyTe/HTN-MAKER/, as is a copy of this dissertation, other

publications related to the project, and data from some experiments.
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CHAPTER 1. INTRODUCTION

determine how and why the task had been accomplished. Based on this explanation,

it produces a recursive series of methods that can be used by an HTN planner to

accomplish that task in similar situations.

1.1 Contributions

This dissertation explores the automatic generation of knowledge for a particular

category of knowledge-intensive artificial intelligence systems, Hierarchical Task Net-

work planners. It introduces a formalism for annotating purely symbolic tasks with

semantics that describe what it means to accomplish those tasks and a framework

for reasoning about these annotated tasks and plans to produce knowledge struc-

tures that can be used by HTN planners to solve new problems. It explains how

this framework can be extended to learn knowledge structures that not only allow

HTN planners to find solutions, but to find high-quality solutions quickly.

I formulate and prove theorems regarding the properties of this framework, in-

cluding the soundness of the knowledge constructs created and the limits of the

knowledge than can be learned and the types of problems that can be solved using

it. I explain in detail several decisions that must be made when implementing this

new framework and their implications for the sort of knowledge that will be learned.

I demonstrate the utility of the knowledge that can be learned through a suite of

experimental evaluations.

1.2 Outline

Chapter 2 formally defines the classical and HTN planning problems and includes an

overview of planning technologies in each formalism. It also discusses the problem

of extending the classical and HTN formalisms to work with domains in which

actions have multiple possible outcomes and the related technology of reinforcement

learning.

Chapter 3 formalizes the notion of an annotated task and the HTN-Maker

6



1.2. OUTLINE

framework for learning HTN methods. It includes an extended example of the

execution of HTN-Maker and describes several choices made in implementing the

algorithm. Additionally, it formulates and proves theorems about the soundness and

completeness of the learning algorithm, the types of problems that can be expressed

and solved using the learned methods, and the time complexity of learning.

Chapter 4 explains how the HTN-Maker algorithm can be implemented in a

way that will learn useful methods from domains in which actions have multiple

possible outcomes, producing a new system HTN-MakerND. It includes theorems

and their proofs that the soundness and completeness properties of HTN-Maker

are preserved in HTN-MakerND.

Chapter 5 discusses an integration of HTN-Maker with reinforcement learning

to learn methods that can be used to find high-quality plans. This integration

consists of three related systems: Q-Maker, which learns both methods and initial

estimates of the value of those methods, Q-Reinforce, which updates these values

based on its experiences planning with the methods, and Q-Shop, which uses the

methods with values to find high-quality solutions to planning problems.

Chapter 6 reports on a variety of experiments used to evaluate HTN-Maker

and related algorithms. It first considers the rate at which HTN-Maker learns

from examples, comparing four different configurations of the algorithm. The next

section discusses the speed at which an HTN planner is able to solve problems using

methods learned by HTN-Maker, comparing to classical planners and to the same

HTN planner using methods written by a domain expert. A similar experiment

is performed with HTN-MakerND learning from nondeterministic domains. The

final section compares the speed of planning and quality of solutions produced by

Q-Shop using methods and values learned by Q-Maker and Q-Reinforce to

several classical planners.

Chapter 7 discusses prior work that has been done in machine learning of knowl-

edge for automated planning systems, and in particular other systems that learn

structures similar to HTN methods. Chapter 8 summarizes the finding in this doc-

ument and discusses promising avenues for future work.
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Chapter 2

Background

The problem of automated planning is to find a sequence of actions (a plan) that

will transform one specific state into one of a set of goal states. At its core, auto-

mated planning is thus a special case of the graph search problem in which states

represent nodes of a graph and actions edges. However, the types of problems ad-

dressed in automated planning typically contain far too many states and actions

to be represented explicitly in a reasonable amount of time or space. The field of

automated planning was created when researchers adopted a logic-based formalism

that enables algorithms to reason about large numbers of states and actions without

representing all of them explicitly.

The General Problem Solver (Gps-I) [67] was the first major system to address

what was then called problem solving. One of the most important features of the

General Problem Solver was a decoupling of the algorithm and the description of the

problem, such that it could easily be configured to solve various types of problems.

This would be key to the later development of domain-independent planning as a

field of AI. Although Gps-I introduced the concept of operators that transform

objects and the reasoning strategy means-end analysis, it would not be recognizable

as a planner today.

Cordell Green took the next major step toward planning as a discipline by intro-

ducing the use of logical theorem proving as a reasoning mechanism [23]. His Qa3

system formalized states in first-order logic and actions as functions over the set of
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CHAPTER 2. BACKGROUND

states.

What has become known as classical planning was finally formalized in the

Strips system of Fikes & Nilsson [18], which has been so influential that classi-

cal planning is also often referred to as Strips planning. Further advancements in

the field have used novel algorithms with variants of the Strips problem represen-

tation.

I begin by defining an abstract notion of planning problems, then show how the

classical representation provides an efficient implementation. Although automated

planning is in some ways a unified field, many researchers have developed their own

way of defining problems and solutions. I have done the same in an attempt to unify

notations for classical and HTN planning and to make both as simple as possible.

The definitions in this chapter are strongly influenced by those of Ghallab, Nau, and

Traverso [22], but not identical. I defer discussion of research in machine learning

for automated planning to Chapter 7.

Definition 1. A generic planning domain is a 3-tuple Σ[g] = (S,A, γ), where S

is a finite set of states, A is a finite set of actions, and γ : (S×A)→ S is a partial

function known as the state-transition function. The postscript [g] notates that

this is a generic domain, rather than a classical ([c]) or HTN ([h]) domain.

Definition 2. A generic planning problem is a 3-tuple Ψ[g] = (Σ[g], s0, G),

where Σ[g] = (S,A, γ) is a generic planning domain, s0 ∈ S is the initial state,

and G ⊆ S is the set of goal states.

Definition 3. A plan π = 〈a0, a1, . . . , an〉 is a finite sequence of actions.

Definition 4. A state trajectory ~s = 〈s0, s1, . . . , sm〉 is a finite sequence of states.

Definition 5. Given a generic planning domain Σ[g] = (S,A, γ), a generic planning

problem Ψ[g] = (Σ[g], s0, G), and a plan π = 〈a0, a1, . . . , an〉 such that each action

in π is a member of A, π is a solution to Ψ[g] if there exists a state trajectory

~s = 〈s0, s1, . . . , sn+1〉 beginning with the initial state such that ∀(0 < i ≤ n+1), si =

γ(si−1, ai−1) and sn+1 ∈ G.

10
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Intuitively, a plan is a solution if it is possible to apply the actions in the plan

to the initial state and doing so reaches a final state that is a member of the set of

goal states.

2.1 Classical Planning

The abstract notion of a generic planning domain and problem defined above could

be implemented in several different ways. The most straightforward representation

is a labeled directed multigraph where the members of S are the nodes, the members

of A are labels that are applied to the edges (each edge has exactly one label but

the reverse is not true, and there might be multiple edges between two nodes with

different labels), and the values of γ specify what edges exist and what their labels

should be. For large problems, however, the size of the sets of states and actions will

be unmanageable. Furthermore, this implementation does not contain any knowl-

edge about the relationships between states other than the existence of transitions

between them, and it will thus be impossible to find plans more efficiently than a

general-purpose algorithm for finding paths in a directed graph.

Early planners such as Strips [18] used a representation based on propositional

logic, in which a state was a set of propositions that held concurrently and an action

deleted some propositions from a state while adding others. This meant that the

set of states did not need to be represented explicitly; rather one state could be

created from another by applying actions as necessary. However, the set of actions

still needed to be specified and could be quite large. Because states and actions

had a meaningful internal representation, it was possible for planning algorithms

to reason about states and actions and thus use an informed, rather than a blind,

search.

Other planners such as Sas+ [2] have represented a state as the values of a set

of variables and actions as changes to the values of certain variables. The most

common representation of states and actions, however, is based on first-order logic.

This is the representation that I will use throughout this document.
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CHAPTER 2. BACKGROUND

2.1.1 Definitions For Classical Planning

Definition 6. A constant is a symbol that refers to one specific object, while a

variable is a symbol that represents an as-yet unspecified object. A term is either

a constant or a variable. All terms are represented as strings of characters. We

will follow the convention that the first character of a variable is a question mark.

Figure 2.1 shows a variety of example terms. The first, third, and fifth are constants,

while the second and fourth are variables.

block072 ?a lskdjf0j ?TheTruck Aristotle

Figure 2.1: Several example terms

Definition 7. A predicate is a template for a type of simple statement about the

world. It consists of a predicate symbol and a non-negative number which is its

arity.

Definition 8. An atomic formula, or atom, is a specific statement about the world.

Syntactically, an atom consists of an opening parenthesis, a predicate symbol, a

number of terms equal to the arity of the predicate called the arguments, and a

closing parenthesis. If an atom contains no variables, then it is ground. Figure 2.2

shows a variety of example atoms.

(On block072 block231) (Hand-Empty)

(IsPhilosopher Aristotle) (Truck-At ?TheTruck PackardLab)

(asdf lskdjf0j) (a ?b ?c d ?e)

Figure 2.2: Several example atoms

Definition 9. A state s is a finite set of ground atoms, representing all statements

that are true at some particular point in time. We use the closed-world assumption,

which means that any atom that does not appear in a state is explicitly false. A

ground atom holds in a particular state if it is a member of that state.

12



2.1. CLASSICAL PLANNING

(on-table A)

(on-table B)

(on C A)

(clear B)

(clear C)

(hand-empty)

(a) First State

(on-table A)

(on-table B)

(clear A)

(clear B)

(holding C)

(b) Second State

(on-table A)

(on-table B)

(on C B)

(clear A)

(clear C)

(hand-empty)

(c) Third State

Figure 2.3: Three example states from the Blocks-World domain

Figure 2.3 shows three example states. These states and further examples

throughout this document are taken from the Blocks-World domain [93]. This

domain models a number of cubical blocks sitting on a table (possibly on top of each

other) and a robotic hand that can hold one block at a time. The five predicates in

this domain have semantics that a particular block is directly on the table, on top of

another specific block, clear (sitting without anything above it), held by the robotic

hand, or that the robotic hand is empty. In the first state, block A is on the table

with block C above it, block B is on the table, and the robotic hand is empty. In

the second state, blocks A and B are on the table and block C is held by the robotic

hand. In the third state, block A is on the table, block B is on the table with block

C above it, and the robotic hand is empty. Because of the closed-world assumption,

we know that there does not exist a block D in any of these states, and that block

C is not on the table.

Definition 10. A substitution u is a collection of variable-term pairs. The result

of applying a substitution to an atom is a copy of that atom except that any

variables that appeared in it and that were the first part of a pair in the substitution

are replaced by the second part of that pair in the substitution.

Definition 11. An action is a four-tuple a = (ah, aφ, a−, a+). The head of an

action (ah) has a similar form to that of an atom: an opening parenthesis, the name

of the action, 0 or more parameters, and a closing parenthesis. All of the parameters

of the head of an action must be constants. By convention, the names of actions

begin with an exclamation point. The preconditions (aφ), negative effects (a−),
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and positive effects (a+) of an action are finite sets of atoms whose parameters all

appear in the head of the action.

Definition 12. An action a = (ah, aφ, a−, a+) is applicable to a state s if and only

if each member of the preconditions of the action is also a member of the state.

Formally, a is applicable to s iff aφ ⊆ s. The result of applying an applicable action

a to a state s is a new state s′ that is a copy of s from which the negative effects of

a have been removed and to which the positive effects of a have been added. That

is, s′ = (s \ a−) ∪ a+. The result of applying an inapplicable action to a state is

undefined.

( :action

:head

(!Unstack C A)

:precondition

{ (on C A),

(clear C),

(hand-empty) }

:negative-effects

{ (on C A),

(clear C),

(hand-empty) }

:positive-effects

{ (clear A),

(holding C) }

)

(a) First Action

( :action

:head

(!Unstack C B)

:precondition

{ (on C B),

(clear C),

(hand-empty) }

:negative-effects

{ (on C B),

(clear C),

(hand-empty) }

:positive-effects

{ (clear B),

(holding C) }

)

(b) Second Action

Figure 2.4: Two example actions from the Blocks-World domain

Some researchers define states and the preconditions and effects of actions to be

conjunctive logical formulas rather than sets of atoms. The set-based representation

is easier to discuss and visualize and is sufficient to model the knowledge used in

this document, so I have chosen it.

14



2.1. CLASSICAL PLANNING

Figure 2.4 shows two example actions in the Blocks-World domain. This and

many other examples throughout the text use a language of my own devising. It is

heavily inspired by the Planning Domain Description Language (PDDL) [21], but

modified to be more verbose, to more explicitly match the set-based representation

used in this document, and to support additional data structures. The action shown

in Figure 2.4a unstacks block C from on top of block A. This action will be applicable

to any state in which block C is on top of block A, block C has nothing on it, and the

robotic gripper is empty. The state shown in Figure 2.3a is one of many in which

this action is applicable. The result of applying this action to that state would be

the state shown in Figure 2.3b. The action shown in Figure 2.4b unstacks block C

from on top of block B. It is not applicable in the state of Figure 2.3a, but would be

from the state of Figure 2.3c. The result of applying this second action to the state

of Figure 2.3c would be the state of Figure 2.3b.

Definition 13. An operator is a four-tuple o = (oh, oφ, o−, o+). The names and

semantics of the components of an operator are the same as those of an action

with one exception: the head (and thus, the other components) of an operator may

include variables.

Definition 14. The result of applying a substitution u to an operator o (notated

u(o)) is a copy o′ of that operator in which variables in o have been replaced by their

corresponding term (if there is one) in u. If the resulting operator o′ is ground, then

it is also an action and called an instantiation of the operator. As shorthand, we

will say that an operator o is applicable to a state s iff there exists a substitution u

such that u(o) is an action that is applicable to s.

Figure 2.5 shows the operators in the Blocks-World domain. Figure 2.5a is a

generalized version of the two unstacking actions shown in Figure 2.4; it can be used

to unstack any block ?above from any block ?below that satisfy its preconditions.

The action of Figure 2.4a is the result of substituting C for ?above and A for ?below,

while the action of Figure 2.4b is the result of substituting C for ?above and B for

?below. The operator of Figure 2.5c has an opposite effect, causing one block to
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be placed on another. There are two different substitutions that would make this

operator applicable in the state of Figure 2.3b: {?above / C, ?below / A} and

{?above / C, ?below / B}. The result of applying this operator with the first of

these substitutions would be the state of Figure 2.3a, while doing so with the second

substitution would yield the state of Figure 2.3c.

Definition 15. A classical planning domain is a triple Σ[c] = (C,P,O) where

C is a finite set of constants, P is a finite set of predicates, and O is a finite set of

operators. Every atom that appears in one of the operators in O must correspond

to one of the predicates in P .

Because of the logic-based representations of states and actions, the components

of a classical planning domain fully specify a generic planning domain. The set of

actions can be derived by generating all instantiations of the operators, while the

set of states is the power set of the set of all possible atoms, which can be generated

from the set of constants and the set of predicates. The state-transition function is

implicit in the actions themselves and what it means to apply an action to a state.

A classical planning domain is typically written by a human expert as a way to

formalize the types of statements that are relevant to a domain and the way in which

actions interact with states made of those relevant statements. As such, the designer

of the classical planning domain typically has a semantic interpretation in his own

mind for the symbols he is using. These semantics, however, are not explicitly

represented in the operators of the classical planning domain. Thus, while it makes

sense to the reader that (On A B) and (On A C) could not be simultaneously true,

a planning system has no similar insight. The only way the domain designer can

ensure that this is the case is to create operators that will not add one of these

unless it also deletes the other or contains preconditions that preclude it from being

true.

The discretization of abstract concepts into formal constructs is in some ways a

creative process, and two people may design very different classical planning domains

to describe the same class of problems. In addition to the domain description that we

use, there is another conceptualization of Blocks-World that uses three operators
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( :operator

:head

(!Unstack ?above ?below)

:precondition

{ (on ?above ?below),

(clear ?above),

(hand-empty) }

:negative-effects

{ (on ?above ?below),

(clear ?above),

(hand-empty) }

:positive-effects

{ (clear ?below),

(holding ?above) }

)

(a) Operator !Unstack

( :operator

:head

(!Pickup ?it)

:precondition

{ (on-table ?it),

(clear ?it),

(hand-empty) }

:negative-effects

{ (on-table ?it),

(clear ?it),

(hand-empty) }

:positive-effects

{ (holding ?it) }

)

(b) Operator !Pickup

( :operator

:head

(!Stack ?above ?below)

:precondition

{ (clear ?below),

(holding ?above) }

:negative-effects

{ (clear ?below),

(holding ?above) }

:positive-effects

{ (on ?above ?below),

(clear ?above),

(hand-empty) }

)

(c) Operator !Stack

( :operator

:head

(!Putdown ?it)

:precondition

{ (holding ?it) }

:negative-effects

{ (holding ?it) }

:positive-effects

{ (on-table ?it),

(clear ?it),

(hand-empty) }

)

(d) Operator !Putdown

Figure 2.5: Four example operators from the Blocks-World domain
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and does not consider states in which the robotic hand is holding a block. Instead,

it has one operator that is equivalent to a !Pickup followed by a !Stack, a second

that is equivalent to a !Unstack followed by a !Stack, and a third that is equivalent

to a !Unstack followed by a !Putdown. Either of these could be further modified

by representing the table explicitly as a constant.

Definition 16. A classical planning problem is a triple Ψ[c] = (Σ[c], s0, g),

where Σ[c] = (C,P,O) is a classical planning domain, s0 is the initial state, and g

is a finite set of ground atoms called the goals of the problem. Each of the atoms

in s0 and g must be a specialization of a predicate in P with constants from C.

As is the case with a domain, a classical planning problem represents a generic

planning problem. We have already seen how the domain components are equivalent,

and the initial states are the same. The set of goal states of a generic planning

problem correspond to those states that contain every member of the goals of a

classical planning problem.

Definition 17. Given a classical planning domain Σ[c] = (C,P,O), a classical

planning problem Ψ[c] = (Σ[c], s0, g), and a plan π = 〈a0, a1, . . . , an〉 in which each

action is an instantiation of an operator in O with constants from C, π is a solution

to Ψ[c] if there exists a state trajectory ~s = 〈s0, s1, . . . , sn+1〉 beginning from the

initial state such that ∀(0 < i ≤ n+ 1), ai−1 is applicable to si−1 and si is the result

of applying ai−1 to si−1, and g ⊆ sn+1. Intuitively, a plan is a solution if it is possible

to apply the actions in plan to the initial state and doing so reaches a final state in

which the goals hold.

I follow the lead of many researchers in implementing one minor refinement of

classical planning in which each constant and variable has an associated type, which

is purely symbolic. In a substitution where a variable is replaced by a term, both

must be of the same type. Using typed variables in predicates and operators makes

it much easier to debug problems in classical planning domains and can provide a

modest improvement in performance when a planner needs to consider only those

constants of a particular type. Adding types does not affect the expressivity of

18



2.1. CLASSICAL PLANNING

classical planning, because they can be modeled as creating a new predicate for

each type, making these predicates true for the constants of those types in the

initial state, and including these predicates as preconditions of operators for the

types of their variables. The Blocks-World domain does not have multiple types

of constants, but most others do. In examples where types are needed, a variable

declaration consists of the name, a dash, and then the type.

2.1.2 Classical Planning Systems

Quite a number of classical planning systems have been devised, and a competi-

tion among classical planners is held every two years to evaluate new ideas and

enhancements. The primary metric by which planning systems are judged is their

running times on various problems. Through advances in representation and rea-

soning, and to a lesser extent hardware upgrades, modern classical planners are able

to solve in seconds problems that would have been infeasible when the field was

new. In recent years there has been some focus on not simply finding a solution

quickly, but finding an optimal solution (minimizing the number of actions taken or,

in more sophisticated representations, the total cost of the plan). The other driver

of advances in planning technology is expanding classical planning to more expres-

sive paradigms, allowing the reasoners to work directly with temporal constraints,

numeric quantities, and resources.

The simplest algorithm for solving a classical planning problem begins by gen-

erating a list of all actions a that are applicable in the initial state s0, selecting one,

and generating the subsequent state s′ = γ(s0, a). The algorithm then continues

extending the plan from state s′ until it reaches a state in which the goals g hold.

This is called forward-chaining state-space planning, because it explores the graph of

states by iterating forward from the initial state. Although forward-chaining state-

space planning is one of the simplest and earliest approaches, many of the best

modern planners are based on the same ideas, because knowledge of the current

state enables many powerful reasoning techniques. As with other search problems,

nodes may be explored in a variety of different orders: depth-first, breadth-first,
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iterative deepening, etc, and standard techniques may be used to prune nodes or

detect loops in the graph [77].

Algorithm 1 shows pseudocode for a simple forward-chaining, state-space clas-

sical planner, FcSsC-Plan. The algorithm begins by checking if the problem is

trivially solvable (Line 3) and, if so, returns the empty plan as a solution (Line 4).

Next, it checks for an action that is applicable in the initial state (Line 5). If one (or

more) are found, one is selected nondeterministically (Line 6), and the state that

results from applying that action to the initial state is calculated (Line 7). The

selected action is then prepended to the solution to a new problem to achieve the

goals from this new state (Line 8). If that problem has no solution, the algorithm

backtracks and nondeterministically chooses a different action or, if none are avail-

able, reports that no solution to the current problem can be found (Line 9). Because

the FcSsC-Plan algorithm follows the definition of a solution directly, it should

be clear that it is both sound and complete.

Algorithm 1: A forward-chaining state-space classical planner

Procedure FcSsC-Plan(Ψ[c] = (Σ[c] = (C,P,O), s0, g))1

begin2

if g ⊆ s0 then3

return 〈〉4

if ∃((o ∈ O, u)|u(oφ) ⊆ s0) then5

Nondeterministically select such an o and u6

Compute new state s′ ← (s0 \ u(o−)) ∪ u(o+)7

return 〈u(o)〉· FcSsC-Plan(Ψ′[c] = (Σ[c], s′, g))8

return FAIL9

end10

An alternative approach is to begin from the goals g and generate a list of actions

a that achieve one or more goals, select one, and add its preconditions to the list

of goals to achieve. When the list of outstanding goals are all true in the initial

state, the collected actions can be executed in reverse order to transform the initial

state into a state in which the goals of the classical planning problem hold. This is

called backward-chaining state-space planning, even though the algorithm does not
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consider full states during the search. Because there are often fewer actions that

achieve a certain goal than there are actions applicable in a certain state, backwards-

chaining state-space planning can be much faster than forward-chaining state-space

planning in certain domains.

The Strips system [18] that popularized a logic-based representation for states

and actions used a variant of backward-chaining state-space planning in which plans

for different goals may not be interleaved. What this means is that all actions nec-

essary to achieve the first goal must precede all actions necessary to achieve the

second goal, and the same is true recursively of subgoals created from the precon-

ditions of selected actions. This restriction greatly prunes the search space and

allowed Strips to solve larger problems than comparable systems. However, there

are problems that cannot be solved without subgoal interleaving (formally, their

goals are not trivially serializable), and Strips is incapable of solving them.

A particularly well-known example of a problem in the Blocks-World domain

that the Strips system cannot solve is the Sussman anomaly [81]. The state shown

in Figure 2.3a is the initial state of the Sussman anomaly, and the goal is to have

block A on block B and block B on block C. The straightforward way to accomplish

the first goal is to unstack C from A, place C on the table, pick up A, and stack A

on B. However, any attempt to place B on C after doing this will require removing

A from B. If the planner instead tries the second goal first, it will simply pick up B

and stack it on C, but again it will need to un-do this to accomplish the first goal.

The first major shift in planning algorithms was from a state-space perspective,

as described above, to a plan-space perspective, in which the search is over the set

of all possible plans. The primary data structures in plan-space planning are plan

steps, binding constraints, ordering constraints, and causal links. Plan steps are

simply instantiations of operators, with binding constraints specifying the bindings

of variables to constants. Ordering constraints specify that one plan step must occur

before a second, and a causal link denotes that a precondition of one step depends

on a positive effect of another. The basic plan-space planning algorithm begins

with two dummy steps – one with no preconditions and the atoms from the initial

state as its positive effects, and one with no effects and the goals of the problem as

21



CHAPTER 2. BACKGROUND

its preconditions. The algorithm proceeds by solving a flaw in the plan (either a

precondition of a step that is not supported by a causal link or a causal link that is

threatened by another step that could delete the effect between the two steps) by

introducing either another step or constraint until it arrives at a plan with no flaws.

The flexibility of this approach proved much more efficient than previous state-space

algorithms. The ideas of plan-space planning were developed by many people over

a number of years, but the best-known planner to incorporate them was UC-Pop

[71].

The next major algorithm, GraphPlan [5], was provided by researchers outside

of the automated planning community. Rather than working directly in either the

state or plan space, GraphPlan operates on a new data structure called a planning

graph. The planning graph consists of nodes in a sequence of levels and edges

between nodes in different levels. The first level contains all of the atoms from

the initial state as its nodes, while the second level contains all actions that are

applicable in the initial state as its nodes. The third level consists of all atoms

that are in the first level as well as those produced by any member of the second

level, while the fourth level consists of all actions that are applicable based on the

atoms in the third level. In this way, every odd level represents all facts that could

potentially be true (although not necessarily simultaneously) after a certain number

of actions have been taken.

There are three types of edges within a planning graph. First, there are edges

from the nodes in each atom level to the actions in the following action level rep-

resenting the relationship that the atom is a precondition of the action. Similarly,

there are edges from the actions in each action level to their positive and negative

effects respectively in the following atom level.

When an even level is reached that contains all elements of the goals, the algo-

rithm attempts to search backwards through the planning graph for a solution. This

backwards search marks the goal atoms in their level, then the actions that produce

them in the previous level, then the atoms that are the preconditions of the actions

in the level before that, and so forth to the level representing the initial state. An

action may not be marked if it has a negative effect that is marked in the following
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level. If this search fails, it means that there have not yet been enough levels for

all of the goals to be simultaneously true. Thus, the algorithm continues expanding

the planning graph until a solution can be found. The maximum necessary size of

the planning graph is limited by the number of actions in the shortest solution.

While GraphPlan was quite effective in itself, it has become even more influen-

tial as a subroutine of heuristic planners. FastForward [28] is a forward-chaining

state-space planner that uses a hill-climbing search strategy, and a state heuristic

calculated by a variant of GraphPlan. Specifically, to calculate the heuristic value

of a state s, FastForward runs GraphPlan from that state with a version of

the domain in which the negative effects of all operators are removed and counts

the number of steps in the solution to this relaxed version of the problem. The re-

moval of negative effects makes GraphPlan very fast because the search backward

through the planning graph becomes trivial, but the plans generated are unlikely

to be actual solutions to the original problem. The size of these plans is a useful

heuristic, however, because it never understates the true cost of finding a solution

from that state. In fact, use of this relaxed planning graph heuristic has proven

very efficient. Most classical planning systems since FastForward have used fur-

ther enhancements in heuristic search by using more accurate heuristics, applying

heuristics in plan-space planners, or adjusting the search strategy used.

There have been many other systems designed to solve classical planning prob-

lems, of which I will mention only a few. Kautz and Selman [37] introduced the

idea of casting planning as a Boolean satisfiability problem and using existing algo-

rithms from that field with the SatPlan system. Others have recast planning as a

constraint programming problem, such as CPlan [87]. The SGPlan6 [31] system

attempts to partition the problem into multiple sub-problems that can be solved in

parallel, then combines the solutions to these sub-problems to create a solution to

the original problem.

The primary drive behind these systems and other innovations in classical plan-

ning has been new techniques for finding plans as quickly as possible. Because the

question of whether or not a classical planning problem even has a solution is in the
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pspace complexity class [14], algorithms that can solve even moderately larger prob-

lems in reasonable time and space are considered significant contributions. Many of

these systems have also introduced or supported more complex representations such

as negative preconditions, conditional effects, and domain axioms. These representa-

tional advancements greatly simplify the process of modelling complicated domains,

but do not fundamentally alter the problem because they may be converted into a

strict classical planning representation.

Other works have changed more fundamental assumptions about classical plan-

ning, such as including numbers and arithmetic, resources, and time as first-class

concepts about which the planner may reason, or allowing exogenous events or in-

complete state information. These extensions allow more complex and interesting

domains to be modelled, but significantly complicate planning algorithms.

All of the systems mentioned thusfar have been domain-independent, meaning

that the process used to find a plan is entirely orthogonal to the details of the states

and actions used to model the domain. When certain characteristics of a domain are

understood, it may be possible to design a much more efficient domain-dependent

algorithm that will only work for problems in that domain. More recently, several

researchers have proposed domain-configurable planners, in which some domain-

specific knowledge is used to guide the search algorithm toward a solution. Be-

cause this domain-specific knowledge constrains the possible solutions to problems,

domain-configurable planners are not classical.

TL-Plan[1] is one such domain-configurable planner, which uses domain-specific

temporal logic formulas. Temporal logic formulas are first-order logic formulas en-

hanced with modal operators that can specify that something must be true of some

state, all states, the next state, and so forth. TL-Plan uses a depth-first forward-

chaining state-space search in which each state trajectory is pruned if it does not

satisfy the control formula. With no control formula, TL-Plan will search ran-

domly and thus perform very poorly. With a well-written domain-specific control

formula, however, it can be faster than any known domain-independent planner.

The other major category of domain-configurable planners use Hierarchical Task

Network planning, which is described in the next section.
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2.2 HTN Planning

The idea behind Hierarchical Task Network (HTN) planning is that high-level, ab-

stract tasks can be broken down into simpler subtasks. The simplest tasks corre-

spond directly to actions in a classical planning domain, while the more complex

tasks and descriptions of the way in which they may be replaced by subtasks (called

methods) are the domain-specific knowledge used to configure the planner. Unlike

TL-Plan, in most HTN planners this domain-specific knowledge is not an optional

feature that may enhance performance. Rather, it is a requirement for the planning

process. One way to think of this is that temporal logic control formulas guide the

search by specifying some paths that should not be explored, while HTN methods

specify those paths that may be explored.

2.2.1 Definitions For HTN Planning

Definition 18. A task template is a template for a symbolic representation of an

activity in the world. It consists of a task name and a non-negative number which

is its arity.

Definition 19. A task is a specific activity that may be undertaken in the world.

Syntactically, a task consists of an opening parenthesis, a task name, a number

of terms equal to the arity of the task name called the arguments, and a clos-

ing parenthesis. If a task is equivalent to the head of an action or operator (see

Definition 13), then the task is primitive. Otherwise, it is nonprimitive.

Definition 20. A task network w = 〈t0, t1, . . . tn〉 is a fully-ordered finite sequence

of tasks.

The definition of a task network used here is specific to a particular variant of

HTN planning called Ordered Task Decomposition (OTD). This is the dominant

form of HTN planning today, and the formalism used throughout this paper. In

other types of HTN formalisms, the tasks in a task network do not need to be

totally ordered and may also contain other types of constraints. See Section 2.2.2

for details regarding more general HTN planning systems.
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Definition 21. A method m = (mh,mφ,mw) is a triple in which mh is a nonprim-

itive task called the head of the method, mφ is a finite set of atoms known as the

preconditions of the method, and mw is a task network called the subtasks of the

method. Unlike actions and operators, the preconditions and subtasks of a method

may contain terms that do not appear in the head of the method. The result of

applying a substitution to ground a method is an instantiation of that method.

( :method

:head

(Make-2Pile ?above ?below)

:precondition

{ (on-table ?below),

(clear ?below),

(holding ?above) }

:subtasks

< (!Stack ?above ?below) >

)

(a) First Method

( :method

:head

(Make-2Pile ?above ?below)

:vars

{ ?other }

:precondition

{ (on-table ?below),

(clear ?below),

(on ?above ?other),

(clear ?above),

(hand-empty) }

:subtasks

< (!Unstack ?above ?other),

(Make-2Pile ?above ?below) >

)

(b) Second Method

Figure 2.6: Two example methods from the Blocks-World domain

Figure 2.6 shows two methods for the Make-2Pile task in the Blocks-World

domain. The first method states that when the block that should form the base

of the tower is on the table and clear and the block that should form the top of

the tower is held by the robotic arm, the tower may be completed by stacking the

top on the base. The second method states that when the base is on the table

and clear, the top is on some block and clear, and the robotic arm is empty, the

tower may be completed by unstacking the top block from its current position, then

making a tower in which the top block is on the base block. In this case the second
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subtask is nonprimitive, so it will need to be further reduced by another method. It

should be clear that executing the first subtask of the second method from a state

in which the preconditions of the second method hold should result in a state where

the preconditions of the first method hold.

Definition 22. A method instantiation m = (mh,mφ,mw) is applicable to a state

s and task network w = 〈t0, t1, . . . , tn〉 if mφ ⊆ s and mh = t0. That is, a method

instantiation is applicable if its preconditions hold in the current state and its head

matches the first task in the current task network. The result of applying m to

s and w is the unchanged state s and a new task network w′ = mw · 〈t1, . . . , tn〉.
Intuitively, the initial task in the original task network is replaced by the subtasks

of the method. This is also called a reduction of task t0. We say that a method

is applicable to a state and task network if some instantiation of that method is

applicable.

Definition 23. An action a = (ah, aφ, a−, a+) is applicable to a state s and task

network w = 〈t0, t1, . . . , tn〉 if aφ ⊆ s and ah = t0. That is, an action is applicable

if its preconditions hold in the current state and its head matches the first task

in the current task network. The result of applying a to s and w is a new state

s′ = (s \ a−) ∪ a+ and new task network w′ = 〈t1, . . . , tn〉. Intuitively, the action is

applied to the state as in classical planning and the first task in the task network is

removed. We say that an operator is applicable to a state and task network if some

instantiation of it into an action is applicable.

Definition 24. Given a state s, task network w, set of operators O, and set of

methods M , a decomposition of w is a plan π that can be generated by recursive

reductions of tasks in w and their subtasks using methods in M . A directed graph

in which nodes are tasks and edges are task-subtask relationships is a decomposi-

tion tree. A set of decomposition trees, one for each task in a task network, is a

decomposition forest.

Specifically, π = 〈a0, a1, . . . , an〉 is a decomposition of w = 〈t0, t1, . . . , tm〉 from s

if one of the following is true:
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• Both π and w are of length 0.

• Task t0 is the head of action a0, action a0 is applicable to state s, and the plan

〈a1, . . . , an〉 is a decomposition of task network 〈t1, . . . , tm〉 from state γ(s, a0).

• There exists a method instantiation m = (mh,mφ,mw) such that mh is task

t0, mφ ⊆ s, and π is a decomposition of the task network mw · 〈t1, . . . , tm〉 from

state s.

For example, consider the state of Figure 2.3a, the initial task network w = 〈
(Make-2Pile C B) 〉, and the plan π = 〈 (!Unstack C A), (!Stack C B) 〉. (When

writing plans, we will include only the heads of the actions, since they can be used

to look up the other details.) Neither the plan nor the task network are of length 0,

and the first task in the task network is not the head of the first action in the plan.

However, there does exist an instantiation of the method from Figure 2.6b with

substitution {?above/C, ?below/B, ?other/A} such that its head is the first task

in the task network, and its preconditions are applicable in the state. Therefore,

π will be a valid decomposition of w from the state of Figure 2.3a if it is a valid

decomposition of the task network w′ = 〈 (!Unstack C A), (Make-2Pile C B) 〉
from that same state.

Neither π nor this new task network w′ are of length 0, but the first task in the

task network now does match the head of the first action in the plan. Furthermore,

that action is applicable to the state of Figure 2.3a. Thus, π will be a decomposition

of w′ from the state of Figure 2.3a if the subplan π′ = 〈 (!Stack C B) 〉 is a

decomposition of the third task network w′′ = 〈 (Make-2Pile C B) 〉 from the state

of Figure 2.3b.

Neither π′ nor w′′ are of length 0, and the first task in w′′ is not the head of the

first action in π′. However, there does exist an instantiation of the method from

Figure 2.6a with substitution { ?above/C, ?below/B } such that its head is the first

task in w′′ and it is applicable to the state of Figure 2.3b. Therefore, π′ will be a

valid decomposition of w′′ from the state of Figure 2.3b if it is a valid decomposition

of a fourth task network w′′′ = 〈 (!Stack C B) 〉 from that same state.
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Neither π′ nor w′′′ are of length 0, but the first task in w′′′ does match the

head of the first action in π′. Furthermore, that action is applicable to the state of

Figure 2.3b. Thus, π′ will be a decomposition of w′′′ from the state of Figure 2.3b

if the subplan π′′ = 〈〉 is a decomposition of a fifth task network w′′′′ = 〈〉 from the

state of Figure 2.3c. Because π′′ and w′′′′ are both of length 0, it is. Following this

recursive chain of causation, we have demonstrated that π is a valid decomposition

of w from the state of Figure 2.3a. Figure 2.7 shows the associated decomposition

tree.

(Make-2Pile C B)

(!Unstack C A) (Make-2Pile C B)

(!Stack C B)

Figure 2.7: An example decomposition tree

Definition 25. An HTN planning domain is a 5-tuple Σ[h] = (C,P,O, T,M),

where C is a finite set of constants, P is a finite set of predicates, O is a finite set of

operators, T is a finite set of task templates, and M is a set of methods. Each of the

atoms in one of the operators from O or methods from M must correspond to one

of the predicates in P . Each of the primitive task templates in T must correspond

to the head of an operator in O. The heads of each method in M must correspond

to a nonprimitive task template in T .

Definition 26. An HTN planning problem is a triple Ψ[h] = (Σ[h], s0, w0),

where Σ[h] = (C,P,O, T,M) is an HTN planning domain, s0 is the initial state,

and w0 is the initial task network. Each of the atoms in s0 must be constructed

from a predicate in P and constants in C. Each of the tasks in w0 must be con-

structed from a task template in T and constants in C.

Definition 27. Given an HTN planning problem Ψ[h] = (Σ[h], s0, w0), and a plan

π = 〈a0, a1, . . . , an〉, π is a solution to Ψ[h] if π is a decomposition of w0 from s0.
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Unlike a classical planning domain, there is not a one-to-one correspondence

between a generic planning domain and an HTN planning domain, nor between

a generic planning problem and an HTN planning problem. In fact, there exist

problems that can be modelled as an HTN planning problem but not as a generic

planning problem or classical planning problem. Specifically, the set of solutions to

a classical planning problem correspond to a regular language, while the set of solu-

tions to an HTN planning problem correspond to a context-free language. However,

this work defines a relationship between a certain subset of HTN planning problems

and equivalent classical planning problems. For more details, see Section 3.1.

2.2.2 HTN Planning Systems

The ideas that became HTN planning have the same antecedents as plan-space

planning. In the same way that steps in plans might be related through ordering and

binding constraints and causal links, a step might be related to a set of other steps of

which it is an abstraction. The ABStrips system [79] extended the representation

of Strips to include abstract versions of operators that have some preconditions

removed. After solving a problem using these abstract operators, ABStrips would

refine this plan so that it became a solution with the complete operators. For

maximum generality, the system could work through a series of progressively more

concrete abstraction spaces until it was operating in the complete domain.

In Noah [78], this hierarchy of abstraction spaces was enhanced with the prin-

ciple of least commitment, which means that temporal orderings among steps were

specified only when necessary. Furthermore, this system introduced a language

called Soup that allowed the user to provide domain-specific knowledge that de-

scribed procedurally how to accomplish goals. Thus, it was one of the first domain-

configurable planners. As a result of these enhancements, Noah was able to find an

optimal solution to the Sussman anomaly that could not be found by ABStrips.

Nonlin [85] is a further refinement of these ideas that uses a task formalism to

describe not only preconditions and effects of actions, but ways in which abstract

actions may be expanded into lower-level actions or subtasks. These expansion
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rules have essentially the same form as the HTN methods described in this docu-

ment, except that there is no explicit distinction between primitive and nonprimitive

tasks and a partial ordering may be defined over subtasks. In addition, expansion

rules may specify non-temporal relationships between subtasks, similar to the causal

links in plan-space planning. Like Soup rules, task formalisms are entirely domain-

specific. Because Nonlin makes nondeterministic choices in circumstances where

Noah commits to one selection, it is able to solve a greater number of problems.

The Sipe-2 system [90] combines the concept of solving problems at one level

of abstraction and then refining that solution with support for reasoning about

resources and constraints, and has been used in many “real-world” applications. O-

Plan [9] is similarly based on Nonlin and is designed to allow the use of a variety

of search control heuristics.

Although many of these proto-HTN systems were developed in the 1970s, formal

definitions of HTN planning were not developed until more than a decade later. Yang

formulated a number of rules under which what he called action reduction schemas

should be designed to improve efficiency of planners by early recognition of parts

of the search space that cannot possibly be completed [96]. The Priar system

[35] introduced a framework for validating the correctness of nonlinear, hierarchical

plans generated as refinements of other existing plans.

The first HTN planner using something like the definitions in Section 2.2.1 was

Umcp [12], whose authors also developed the first complete formal analysis of HTN

planning. Based on this framework, the authors were able to prove that Umcp is

both sound (it never produces an incorrect solution for an HTN planning problem)

and complete (if an HTN planning problem has a solution, it will find a solution).

The same authors later demonstrated that the problem of determining whether or

not an HTN planning problem is solvable using their formalism (in which task net-

works allow partial orderings and other types of constraints) is undecidable. How-

ever, if they restricted task networks to be totally ordered, as in this work, the

problem is in the exptime complexity class [13].

Shop [63] was developed partly as a response to these complexity results. Shop,

which stands for Simple Hierarchical Ordered Planner, uses a forward-chaining
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state-space search and the Ordered Task Decomposition formalism described in Sec-

tion 2.2.1. Because tasks are totally ordered, Shop avoids the problem of searching

for unwanted interactions between tasks as in Umcp, and because Shop has an

explicit representation of the state at any point in a plan, it can support complex

representations such as Horn clauses, numeric computations, and even arbitrary ex-

ternal functions. Shop2 [62] is an extension in which partially ordered subtasks are

reintroduced and various additional rich representations are supported.

Algorithm 2 contains pseudocode of a simple forward-chaining, state-space HTN

planner similar to Shop. FcSsH-Plan begins by checking whether or not the

initial task network is empty (Line 3), and if so returns the empty plan as a solution

(Line 4). Otherwise, the initial task network must contain at least one task, which

is either primitive or nonprimitive. If that task is primitive (Line 5), then the

algorithm searches for an action that matches the task and is applicable in the

initial state (Line 6). There may be at most one such action. The selected action is

then prepended to a solution to a new problem that consists of the resulting state

and task network from which that task has been removed (Line 7 - 8). If there is no

action matching a first task that is primitive, or no solution can be found that begins

with such an action, the algorithm reports that the plan is unsolvable. If the first

task is nonprimitive (Line 10), then the algorithm selects a method instantiation that

matches the task and is applicable in the initial state (Line 11 - 12) and attempts

to solve the problem with the same state and the nonprimitive task replaced by the

subtasks of the method instantiation (Line 13). As before, if there does not exist a

method instantiation from which this problem can be solved, the algorithm reports

failure. Like FcSsC-Plan, this algorithm follows directly from the definitions, and

it should be clear that it is sound and complete.
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Algorithm 2: A forward-chaining state-space HTN planner

Procedure FcSsH-Plan(Σ[h], s0, w0)1

begin2

if w0 = 〈〉 then3

return 〈〉4

if w0 = 〈t0, t1, . . . , tn〉 and t0 is primitive then5

if ∃ an o ∈ O and u such that u(oφ) ⊆ s0 and u(oh) = t0 then6

Compute new state s′ ← (s0 \ u(o−)) ∪ u(o+)7

return 〈u(o)〉· FcSsH-Plan(Σ[h], s′, 〈t1, . . . , tn〉)8

return FAIL9

else10

if ∃ an m ∈M and u such that u(mφ) ⊆ s0 and u(mh) = t0 then11

Nondeterministically select such an m and u12

return FcSsH-Plan(Σ[h], s0, u(mw) · 〈t1, . . . , tn〉)13

return FAIL14

end15

2.3 Planning In Nondeterministic Domains

One of the fundamental assumptions of classical (and most HTN) planning is that

the domains are deterministic, which means that the result of executing an ac-

tion in a state are known in advance. While this assumption makes planning much

simpler than it would otherwise be, it is generally broken in any “real-world” applica-

tion. Even in the simple Blocks-World domain, if the planner were controlling a

physical robotic arm we would need a way to sense whether or not the robot success-

fully executed its instructions. When trying to place block C on block B, improper

calibration might cause block C to fall to the table, of the arm might carelessly knock

over another pile of blocks, or have other unexpected consequences.

2.3.1 Definitions For Planning In Nondeterministic Domains

Domains in which actions will have one of several possible outcomes, to be de-

termined at the time of execution, are nondeterministic. Note that it is still

necessary for the possible outcomes of an action to be enumerated, although in the
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worst case one could assume that the result of applying an action to a state is any

member of the (finite) set of states in the domain. In such a domain, a plan is not

a sufficient solution to a problem because there is no guarantee that executing the

first n actions in the plan will result in a state where the n+1th action is applicable.

In conditional planning, the solution to a planning problem in a nondeterministic

domain is a policy specifying what action to take for each reachable state. An

agent using this policy would be able to sense the state after executing each action

and then take the following action specified by the policy until it reaches a state in

which the goals hold. There are other ways of handling nondeterminism that require

different sorts of solutions, such as conformant planning, that are outside the scope

of this document. The following definitions formalize these ideas.

Definition 28. An nondeterministic action is a triple a = (ah, aφ, aE). The

head and preconditions of a nondeterministic action are defined in the same way

as the head and preconditions of a deterministic action. Rather than a single set

of negative effects and a single set of positive effects, a nondeterministic action has

a finite, non-empty set aE of pairs, each of which contains a set of negative effects

and a set of positive effects. During execution, exactly one of the pairs in aE will

be used to transform the current state into the successor state.

Nondeterministic operators and the applicability of nondeterministic actions and

operators are defined analogously to their deterministic counterparts. A nondeter-

ministic planning domain Σ[c] = (C,P,O) has the same form as a classical plan-

ning domain but has nondeterministic operators, and a nondeterministic plan-

ning problem Ψ[c] = (Σ[c], s0, g) is one that occurs in a nondeterministic planning

domain 1.

Definition 29. A policy is a partial function 2 Π : S → A, where S is a finite set

of states and A is a finite set of nondeterministic actions.
1I continue to use the suffix [c] for nondeterministic planning domains and problems because

they have the same form as classical planning domains and problems and to produce a visual

distinction between nondeterministic planning domains that use HTNs and those that do not.

They are not, however, classical.
2It is not necessary for a policy to be defined over all states.
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Definition 30. Given a finite set of states S, a finite set of nondeterministic actions

A, and a policy Π over those states and actions, the execution structure of Π is

a directed graph GΠ = (V,E), where V is the set of states S and E is the set of

pairs (s, s′) such that Π(s) = a and s′ is a potential outcome of applying a to s. If

there is a path in GΠ from state s to state s′, then s is a Π-ancestor of s′ and s′ is

a Π-descendant of s. If there is an edge (a path of length 1) from s to s′, the s is

a Π-parent of s′ and s′ is a Π-child of s.

There are several different types of solutions for a nondeterministic planning

problem [8]. These are based not on plans, but on policies, because a plan is inflexible

and cannot respond to different possible outcomes of its constituent actions. A weak

solution is the least interesting, guaranteeing only that with fortuitous circumstances

it is possible to reach a goal state by following a policy. A strong-cyclic solution

is more interesting, guaranteeing that no matter the circumstances, given infinite

time following the policy will reach a goal state. A strong solution guarantees that

in all circumstances following the policy will lead to a goal state in a finite number

of iterations. The following definitions formalize these notions.

Definition 31. Given a policy Π and a nondeterministic planning problem Ψ[c] =

(Σ[c], s0, g), Π is a weak solution to Ψ[c] if and only if there exists a state s′ such

that g ⊆ s′ and s′ is a Π-descendant of s0 in GΠ.

Definition 32. Given a policy Π and a nondeterministic planning problem Ψ[c] =

(Σ[c], s0, g), Π is a strong-cyclic solution to Ψ[c] if and only if for each state s

that is reachable by following Π from s0 there exists a state s′ such that g ⊆ s′ and

s′ is a Π-descendant of s in GΠ, and for each state s that is reachable by following Π

from s0 either Π(s) is defined (s has a Π-descendant) or g ⊆ s (s satisfies the goals).

Definition 33. Given a policy Π and a nondeterministic planning problem Ψ[c] =

(Σ[c], s0, g), Π is a strong solution to Ψ[c] if and only if Π is a strong-cyclic solution

to Ψ[c] and there are no cycles in GΠ.

In order to demonstrate how these definitions may be used in practice, I have

included three algorithms based on them. Algorithm 3 shows a simple controller
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Algorithm 3: A controller that follows a policy

Procedure ExecutePolicy(Σ[c], s0, g,Π)1

begin2

s← s03

while true do4

if g ⊆ s then5

return SUCCESS6

if Π(s) is undefined then7

return FAIL8

s← apply Π(s) to s9

end10

that executes a policy for a nondeterministic planning problem. If the controller has

reached a state that satisfies the goals (Line 5), then it has successfully achieved the

goals. If the controller has reached a state for which the policy does not specify a

next action (Line 7), then it has failed and is unable to continue. If the policy is a

strong or strong-cyclic solution to the problem, then this will never occur. Unlike

the planning stage, it is impossible to backtrack during execution time. Otherwise,

the controller executes the action specified by the policy (Line 9) and observes which

potential effects actually occurred, then continues.

Algorithm 4 shows a simplistic but sound and complete algorithm for finding

weak solutions to nondeterministic planning problems. It begins with an empty

policy (Line 3), and successively adds a rule for each state, chaining backward from

the goals, until the policy contains a rule for the initial state (Line 4). Possible

rules that could be added to the policy are those that can lead to a goal state

(Line 5) and those that can lead to a state for which a rule has already been added

(Line 6). In either case, adding this rule will cause there to be a path in the execution

structure from the newly added state to a goal state. If there are no such rules to

add (Line 7), then the algorithm must backtrack to different choices and, if this is

impossible, report that the problem has no solution. Otherwise, any of the rules

may be chosen (Line 9), and the process continues.
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Algorithm 4: A backward-chaining algorithm for finding weak solutions to
nondeterministic planning problems

Procedure SolveWeak(Σ[c], s0, g)1

begin2

Initialize Π to be undefined for all states3

while Π is undefined for s0 do4

Y = {(s, a)}|Π is undefined for s and applying a to s can result in a5

state s′ where g ⊆ s′

Y = Y ∪ {(s, a)}|Π is undefined for s and applying a to s can result in6

a state s′ where Π is defined for s′

if Y contains no pairs then7

return FAIL8

Nondeterministically select (s, a) from Y and add to Π9

return Π10

end11

Algorithm 5 is a basic algorithm for finding strong-cyclic solutions to nondeter-

ministic planning problems, using a forward-chaining search strategy. It begins by

initializing an empty policy Π, a “fringe” set S of states that must still be explored,

and a “solved” set Sg of states that satisfy the goals (Lines 3 - 5). It then loops

while there remain states in the fringe (Line 6).

Within each iteration of this loop, it nondeterministically selects one of the states

in the fringe and removes it (Lines 7 - 8). If this state satisfies the goals (Line 9),

then it does not need a rule in the policy, and should instead be added to the set

of solved states. Otherwise, if there is no rule in the policy for it (Line 11), then a

rule must be added to process it. If no actions are applicable to this state (Line 13),

then no policy that can reach this state will be a solution, and the algorithm must

backtrack. Otherwise, an applicable action is chosen nondeterministically (Line 15)

and a rule added to the policy for this state-action pair (Line 16). All states that

are Π-children of s in the execution structure are added to the fringe (Line 17), even

those that already have rules or are solved. If the selected state already has a rule

in the policy, then it must have a Π-descendant that does not already have a rule,

or the algorithm will need to backtrack and select a different state at the current
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Algorithm 5: A forward-chaining algorithm for finding strong-cyclic solutions
to nondeterministic planning problems

Procedure SolveCyclic(Σ[c], s0, g)1

begin2

Initialize Π to be undefined for all states3

S = {s0}4

Sg = ∅5

while S 6= ∅ do6

Nondeterministically select s ∈ S7

S = S \ {s}8

if g ⊆ s then9

Sg = Sg ∪ {s}10

else if Π is not defined for s then11

A = {a}|a is applicable to s12

if A = ∅ then13

return FAIL14

Nondeterministically select a ∈ A15

Add a rule to Π that in state s action a should be taken16

Add to S all states that could result from applying a to s17

else18

if s has no Π-descendants in (S ∪ Sg) for which Π is undefined19

then
return FAIL20

return Π21

end22
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iteration (Line 19).

Algorithms 4 and 5 should not be interpreted to imply that backward-chaining

is best suited to finding weak solutions or forward-chaining to finding strong-cyclic

solutions; they are merely examples of different problem-solving strategies. Find-

ing strong solutions is significantly more complicated, and for many problems is

impossible.

2.3.2 Systems That Plan In Nondeterministic Domains

Perhaps the best-known planner for nondeterministic planning domains is MBP,

which uses symbolic model checking to model the planning problem [8]. Model

checking is a broadly-applicable technique in which a problem is represented as a

finite-state machine and that machine is analyzed to determine whether or not it

models a temporal logic formula. When applied to planning in nondeterministic do-

mains, this formula would be a statement that there exists a solution of a particular

type to a planning problem. In symbolic model checking states, actions, and policies

are all represented as such temporal logic formulas, often in a compact representa-

tion for reasoning, such as a binary decision diagram. MBP is capable of producing

weak, strong-cyclic, and strong solutions (or proving that no such solution exists),

based on the selection of one of several internal algorithms.

Alternatively, an existing planning algorithm that uses heuristics or domain-

dependent knowledge to guide a forward-chaining, state-space planner can be adapted

to work in nondeterministic domains by replacing the arbitrary choices made at

Lines 7 and 15 in Algorithm 5 with decisions guided by planning-graph heuristics,

temporal logic formulas, or other techniques [44]. Of particular interest to us is

ND-Shop2, which uses task decomposition to constrain the actions selected. In

ND-Shop2, the fringe and solved sets of Algorithm 5 are of pairs containing a state

and task network. Such a pair is considered solved if the task network is empty,

regardless of the contents of the state. When the first task in the task network

of the selected pair is primitive, there are potentially many successor states, each

paired with the the remainder of the task network. When the first task in the task
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network of the selected pair is nonprimitive, there is exactly one successor pair per

applicable method, which consists of the same state and the modified task network.

In some domains, the search control provided by task reduction in ND-Shop2 is

very effective, but not all. Similarly, some domains can be expressed very compactly

in the BDD-based representation of MBP, and thus solved very quickly. The YoYo

planner combines these two ideas, and thus works well in domains where either

of these conditions holds, and exceptionally in domains where both are true [45].

Yet another idea is to partition a nondeterministic planning problem into several

deterministic planning problems, use existing classical planners to find solutions

to each of those sub-problems, and then combine the results into a strong-cyclic

solution to the original nondeterministic planning problem, as in NdP [46].

2.4 Reinforcement Learning

Reinforcement learning is a closely related field to planning in nondeterministic

domains. The essential difference is that in reinforcement learning there are no

explicitly stated goals, nor is there necessarily a symbolic structure specifying the

states and actions. Rather, there is an agent that interacts with the world by

observing its current state and taking an applicable action. After each action that

it takes, this agent receives a numerical reward. The objective of the reinforcement

learning problem is to discover a policy that will maximize the rewards that the

agent receives.

2.4.1 Definitions For Reinforcement Learning

Reinforcement learning is a synthesis of behavioral psychology, control theory, statis-

tics, and artificial intelligence, and is thus resistant to universal, formal definitions.

Nevertheless, there are some common components to all reinforcement learning sys-

tems [83].

Definition 34. Each reinforcement learning problem consists of an environment

and an agent that acts within that environment.
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The environment contains a set S of states, which describe a certain situation.

At any given time, one and only one state is the current state. States do not need

to have any particular internal structure, but there must be a way for the agent to

determine what is the current state.

The environment also contains a set A of actions, each of which is applicable

in some (possibly improper) subset of states. Actions do not need to have any

particular internal structure, but there must be a way for the agent to determine

what actions are applicable in the current state. The environment contains a state-

transition function γ : S × A → S , which specifies the resulting state when an

action is taken from a given current state. This function is usually probabilistic,

and is often unknown to the agent.

Additionally, the environment contains a reward function R : S × A → R,

which maps a state-action pair to a real number. This function may be deterministic

or probabilistic, and is unknown to the agent.

Definition 35. The environment and agent interact in the following manner:

The agent senses the current state and selects an applicable action. The environ-

ment determines the new current state and the reward that the agent should receive

for taking this action. The agent senses the new current state and the reward that it

received as a result of its most recent choice. The agent chooses an action applicable

to the new current state, the environment determines a successor state and reward,

and so forth.

If this process continues indefinitely, this is a continuous reinforcement learning

problem. Otherwise, it is episodic.

Definition 36. A policy Π : S → A is a function mapping each state to an action

that is applicable to that state. When an agent makes decisions by following a policy,

it is exploiting existing knowledge; when it instead seeks to discover a better policy

it is exploring.

Definition 37. A policy Π is optimal for a reinforcement learning problem if

there does not exist another policy Π′ such that an agent following Π′ would receive

a greater sum of rewards than an agent following Π.
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2.4.2 Reinforcement Learning Algorithms

One class of algorithms for solving reinforcement learning problems is dynamic pro-

gramming, which does not actually require trial-and-error exploration [30]. Dynamic

programming uses a probabilistic policy, which means that rather than mapping each

state to an action that should be taken in that state, each pair of state and action

is mapped to the probability that the action will be taken from within that state.

The initial probabilities in this policy may be assigned arbitrarily, as long as the

probability is 0 for any state-action pair where the action is not applicable in the

state, and that the sum of probabilities across all state-action pairs containing the

same state is 1.

In addition to a probabilistic policy, dynamic programming requires an estimate

of the value of each state, which represents the expected sum of future rewards

that the agent would receive if it found itself in that state and followed the current

policy. These state value estimates may also be assigned initial values arbitrarily.

The value estimates may then be iteratively updated, by replacing the value of each

state with the sum of the expected reward from following the policy in that state

and the values of the successor states that could be reached by following the policy

from that state. When this iterative process reaches a fixed point, the estimates

have converged to the true values of the states, given the current policy.

Based on accurate estimates of state values, it may be possible to improve the

existing policy. Specifically, a new policy may be created that chooses actions in

each state that lead to states with the highest value. Such a policy is either strictly

better than the one from which the state values have been computed, or both are

optimal. State values when following this new policy will not be the same as when

following the old policy, and so they must again be iteratively improved until they

again reach a fixed point. Based on those new state values, the policy may again be

improved, and this process may continue until an optimal policy is formulated.

Unfortunately, dynamic programming is a very computationally expensive pro-

cess, since each iteration requires re-calculating a value for each state at least once,

and there are typically very many states and very many iterations required before
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resolving to an optimal policy. To a certain extent, this can be mitigated by clever

programming and stopping iterative processes before they reach a fixed point. A

more significant problem with dynamic programming is that it requires that the

agent have a great deal of information about the environment. In order to perform

these calculations, the agent needs to have a complete knowledge of the system dy-

namics (given a state and action that is taken in that state, what are the possible

successor states, and what are the probabilities of each occurring) and moderately

comprehensive knowledge of the reward signal (given a state and an action that

is taken in that state, what is expected value of the reward). In practice, this

information is often not available to the agent.

When this advanced knowledge is unknown, the agent must actually try things

and observe the rewards that it receives and states that it reaches. Techniques

based on analyzing the results of attempts to solve episodic reinforcement learning

problems are known as Monte Carlo methods [80]. Within an episode, each state

is reached some finite number of times n, and for each action that is applicable

to that state, the action is chosen some finite number of times k < n. For each

of those action selections the agent receives a certain return, which is the sum of

the immediate reward and all (potentially discounted) rewards received thereafter.

The value of taking an action in a state is simply the average of the returns seen

when doing so. As with dynamic programming, after good estimates of the value of

state-action pairs have been found, the current policy may be improved by selecting

those actions that have the highest values for each state.

In order to guarantee that all actions are selected often enough to get a reasonable

approximation of their values, agents using Monte Carlo techniques typically do not

follow their current policies exactly. Instead, each time a decision must be made it

either chooses randomly with probability ε or chooses the action specified by the

policy with probability 1− ε, where ε is a relatively small value. This is an ε-greedy

policy, because it usually favors exploitation of existing knowledge to acquire the

highest possible returns in the near-term.

A third category of solution strategies is temporal-difference learning [82]. TD-

learning techniques utilize experience rather than complete knowledge, just as Monte

43



CHAPTER 2. BACKGROUND

Carlo techniques do. However, they base the value of a state-action pair directly

on the values of potential successor state-action pairs, like dynamic programming

techniques.

Specifically, a generic TD-learning algorithm might begin by initializing a value

for each state-action pair arbitrarily. Then it will begin an episode and select an

action to take in the initial state (perhaps through an ε-greedy policy based on

the existing state-action values). Each time that it reaches a successor state and

receives a reward, it updates the value of the state-action pair that led to it, based

on the values of the state-action pairs that are now available and the reward that it

received during the transition.

There are algorithms based on each category of solution strategies that are guar-

anteed to converge to an optimal policy, though some do so much more quickly than

others.
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Learning HTN Methods

HTN planning is used more than any other planning technique [91], and there are

many reasons to prefer HTN planning over classical planning. Most notably, with

appropriate domain knowledge Shop can solve problems orders of magnitude more

quickly than even the fastest classical planner [61]. This means that an HTN planner

can solve much larger and more complex problems in a reasonable amount of time

than can a classical planner. Moreover, there exist some types of problems that

cannot be expressed in the classical planning formalism, but can be expressed and

solved in HTN planning [13].

However, the knowledge engineering involved in the creation of methods forms

a significant barrier to more widespread adoption of HTN planning. Because every

solution must follow from a decomposition using the domain-specific methods, it

is necessary that these methods entail at least one solution to every problem in a

given domain. Creating a set of methods and verifying their correctness is a time-

consuming challenge requiring both an intimate understanding of the domain to be

modeled and expertise in the HTN formalism.

This dissertation describes a process for automating the creation of the methods

of an HTN planning domain. The general idea is to consider only tasks that have

clear semantics relative to the atoms in the domain and analyze example plans to

find situations in which such a task has been accomplished. From such a situation,

the system will learn one or more methods describing exactly how the task was
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accomplished and the conditions under which it would be valid to accomplish similar

tasks the same way in other problems.

3.1 Definitions

In order to determine when and how a task has been accomplished, it is necessary

to know what it means to accomplish that task. Although this was natural in

some proto-HTN planning systems, tasks in the Shop formalism have no formal

semantics. Rather, what it means to accomplish a task is defined by which methods

can decompose it in which circumstances. If the methods are unknown, a task is

simply a meaningless symbol. In this work, I associate semantic meanings to the

tasks for which methods should be learned as annotated tasks. Annotated tasks are

similar to tasks as they appear in the Task-Method-Knowledge Language (TMKL)

formalism for process models [60].

Definition 38. An annotated task is a triple τ = (τh, τφ, τ+), in which the head

τh is a task and the preconditions τφ and positive effects τ+ are finite set of

atoms whose arguments are all arguments of the head.

The preconditions of an annotated task specify those conditions that must be

true before that task can be attempted, while the positive effects specify the essential

results of a successful accomplishment of the task. Unlike an action, these positive

effects do not completely specify how accomplishing the task will alter the state.

There are likely many different ways to accomplish a given annotated task, each

of which will have their own side effects. The commonality between these different

ways to accomplish the annotated task is that all of them at a minimum cause

the positive effects of the annotated task to become true. Annotated tasks are not

allowed to have negative effects because classical planning does not allow negative

goals or preconditions. There do exist other, more complicated formalisms in which

this is legal, such as the Action Description Language [70], but it is possible to

simulate such structures in this formalism by adding new atoms that are true only

when their counterparts are false.
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( :annotated-task

:head

(Make-2Pile ?above ?below)

:precondition

{}

:positive-effects

{ (on-table ?below),

(on ?above ?below),

(clear ?above) }

)

(a) Make-2Pile

( :annotated-task

:head

(Invert-2Pile ?o-ab ?o-be)

:precondition

{ (on-table ?o-be),

(on ?o-ab ?o-be),

(clear ?o-ab) }

:positive-effects

{ (on-table ?o-ab),

(on ?o-be ?o-ab),

(clear ?o-be) }

)

(b) Invert-2Pile

Figure 3.1: Two example annotated tasks from the Blocks-World domain

Figure 3.1 shows two annotated tasks from the Blocks-World domain. The

first formalizes what is meant by creating a pile of two blocks. Namely, a pile

of two blocks has been created when the block to become the bottom is on the

table, the block to become the top is on the block to become the bottom, and

the block to become the top is clear. This annotated task has no preconditions

because given the existence of the two blocks in question and the operators of the

Blocks-World domain it is always possible to create a pile of the blocks. The two

example methods shown in Figure 2.6 each accomplish this annotated task. The

correctness of the first method should be apparent: if you begin from a state in

which (on-table ?below) is true and execute an action that causes (on ?above

?below) and (clear ?above) to be true without causing (on-table ?below) to

become false, then each of those three atoms will be true in the succeeding state.

The correctness of the second method depends on what other methods exist for the

Make-2Pile task; if the method used to decompose the final subtask of this method

is correct, then this method too will be correct.

The second annotated task in Figure 3.1 is quite similar to the first. In fact, the

positive effects of the two annotated tasks are identical. What makes the second
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annotated task interesting is that it can only be performed when the two blocks

begin in a pile that has the reverse order of what is desired. That is, the block

that is supposed to be on top of the pile is on the bottom and vice versa. This

precondition is essential to the understanding of inversion; it is not meaningful to

talk about inverting a pile that does not exist.

The examples of Figure 3.1 contain a formal description of what the reader

intuitively understands the symbols Make-2Pile and Invert-2Pile to mean. This

is not true merely of these examples, but of the process of defining annotated tasks

in general. To state the types of tasks we might like to accomplish and what we

mean by those tasks is quite straightforward. On the other hand, formally defining

all possible ways to accomplish a task is quite complicated. Thus, I argue that the

amount of knowledge engineering required to produce a set of annotated tasks for

a domain is trivial compared to that required to design a set of methods for that

domain.

Given the semantics of annotated tasks, it is possible to define an equivalence

between a task and a set of goals. Based on that equivalence, it is further possible

to define an equivalence between a classical planning problem and an HTN planning

problem. Note that while all classical planning problems have an equivalent HTN

planning problem, the reverse is not true. An HTN planning problem only has a

classical equivalent if its initial task network consists of a single task that has been

annotated with no preconditions.

Definition 39. The equivalent annotated task to a set of goal atoms g is

(τh, ∅, g), where τh is an arbitrary nonprimitive task symbol that uniquely represents

this set of goals.

Definition 40. The HTN-equivalent planning problem to a classical plan-

ning problem (Σ[c], s0, g) is an HTN planning problem (Σ[h], s0, w0) where Σ[c] =

(C,P,O), Σ[h] = (C,P,O, T,M), T contains the primitive tasks corresponding to

O and at least one annotated task τ that is the equivalent of g, M is some set of

correct methods for the nonprimitive tasks in T , and w0 = 〈τ〉.
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Definition 41. A learning example is a pair e = (s0, π), where s0 is a state and

π is a plan applicable to that state.

The objective of this work is to capture knowledge from learning examples that

describes how tasks might be accomplished. Specifically, given a classical planning

domain, a finite set of learning examples, and a finite set of annotated tasks, the

system should learn methods that, combined with the components of the classical

planning domain and the annotated tasks, will form a useful HTN planning domain.

The next section describes an algorithm for solving this problem.

3.2 The HTN-Maker Algorithm

My algorithm for the problem of learning HTN methods from examples is called

Hierarchical Task Networks with Minimal Additional Knowledge Engineering Re-

quired (HTN-Maker). The HTN-Maker algorithm analyzes plans to determine

when and how tasks are accomplished and produces methods that can be used

to accomplish those tasks in similar situations. An additional data structure is re-

quired for bookkeeping; an indexed method instance describes how a certain subplan

accomplishes a task.

Definition 42. An indexed method instance is a 6-tuple (xh, x+, xw, xφ, xb, xe),

where xh is the head of an annotated task, x+ is the positive effects of that annotated

task, xw is a task network into which that annotated task may be reduced, xφ is

a finite set of preconditions under which that reduction is valid, and xb and xe are

nonnegative integers representing indices of the beginning and ending of a sub-state

trajectory.

An indexed method instance is created when HTN-Maker learns a method

to accomplish the annotated task given by xh from a subplan that begins directly

after the state indexed by xb and ends directly before the state indexed by xe.

The preconditions of the new method, the subtasks of the new method, and the

postconditions of the annotated task are stored in xφ, xw, and x+, respectively.
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Algorithm 6: A high-level description of the HTN-Maker procedure. The
input includes a classical planning domain description Σ[c], a finite set of learn-
ing examples E, a finite set of annotated tasks T , and a (possibly empty) finite
set of methods M . The output is an updated set M of HTN methods.

Procedure HTN-Maker(Σ[c], E, T ,M)1

begin2

foreach learning example e = (s0, π) ∈ E do3

initialize X ← ∅4

initialize ~S ← 〈s0〉5

for i← 1 to k do6

si ← γ(si−1, ai−1)7

~S ← ~S · 〈si〉8

for f ← 1 to k do9

for i← f − 1 down to 0 do10

foreach annotated task τ = (τh, τφ, τ+) ∈ T do11

if τφ ⊆ si and τ+ ⊆ sf then12

m← Learn-Method(π, ~S, τ,X, i, f)13

M ←M ∪ {m}14

X ← X ∪ {(mh, τ+,mw,mφ, i, f)}15

return M16

end17

This data structure will be used to determine whether or not the annotated task of

xh may be used as a subtask in other methods that are learned later from the same

learning example.

Algorithm 6 shows a high-level pseudocode for the HTN-Maker algorithm. The

algorithm iterates through each of the learning examples independently (Line 3).

For each learning example, it begins by initializing an empty set of indexed method

instances (Line 4) and a state trajectory consisting of the initial state from the

example (Line 5). The rest of the state trajectory is generated by applying each of

the actions in the plan from the example in turn (Lines 6 - 8).

HTN-Maker then considers each non-empty, contiguous subplan (Lines 9 - 10).

Specifically, f is an index pointing to the state that immediately follows the subplan

in question, while i is an index pointing to the state that immediately precedes it.
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For each subplan, HTN-Maker further considers every possible annotated task. If

the preconditions of that task are satisfied in the state that precedes the subplan and

the positive effects of that task are satisfied in the state that follows the subplan,

then the subplan accomplishes that task (Line 12). In that case, HTN-Maker

calls an auxiliary procedure Learn-Method to generate a method describing how

that task was accomplished (Line 13), adds that new method to the set of known

methods (Line 14), and stores an indexed method instance describing how the task

was accomplished (Line 15). That indexed method instance will be used in future

calls to Learn-Method, which is described in Algorithm 7. After processing each

learning example, HTN-Maker returns the expanded set of methods as its output.

The order in which subplans are considered is quite deliberate, and follows

the pattern 〈〈a0〉, 〈a1〉, 〈a0, a1〉, 〈a2〉, 〈a1, a2〉, 〈a0, a1, a2〉 . . . , π〉. Notably, whenever

a part of the plan is being considered all of its contiguous subplans have already

been processed. This is important because it means that whatever knowledge could

be learned from those subplans is already known and stored in the set of indexed

method instances. The Learn-Method procedure will thus be able to use these

indexed method instances to produce complex hierarchies of tasks.

3.2.1 The Learn-Method Algorithm

I now describe my hierarchical goal regression technique, which is the basis of my

procedure for learning the appropriate preconditions and subtasks for an individual

method. Unlike traditional goal regression, hierarchical goal regression can regress

goals both horizontally (through the primitive actions) and vertically (up the task

hierarchy through indexed instances of previously-learned HTN methods).

Traditional goal regression [56] works horizontally on actions similarly to the

backward-chaining state space algorithm for classical planning presented in Sec-

tion 2.1.2. Supposing that the system has a set of goals g, it reasons that action a

can assist in achieving those goals if any member of g is also a member of a+. In

this case, the system can formulate a plan to achieve g if it appends a to a plan that

achieves the preconditions of a and any other goals in g. Thus, the system continues
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with a new set of goals g′ that contains the members of aφ and any members of g

that are not also members of a+. We say that goal g has been regressed through

action a. Given a set of goals g and a plan π, we can find the set g′ = R(g, π) with

a regression operator similar to the one defined in [75], but simplified due to the use

of a set-theoretic formulation:

• If π is the empty plan, then R(g, π) = g.

• If π contains a single action a = (ah, aφ, a−, a+) and a+∩ g 6= ∅, thenR(g, π) =

(g \ a+) ∪ aφ.

• If π contains a single action a = (ah, aφ, a−, a+) and a+∩ g = ∅, thenR(g, π) =

g.

• If π contains two or more actions 〈a0, a1, . . . , an〉, thenR(g, π) = R(R(g, 〈an〉),
〈a0, a1, . . . , an−1〉).

In hierarchical goal regression, a set of goals can be regressed over either a

primitive action or an indexed method instance for a nonprimitive task. In the case

of the former, the regression is performed using the preconditions and effects of the

action in the same manner as traditional goal regression. Each indexed method

instance (xh, x+, xw, xφ, xb, xe) contains a description of how certain atoms (those

in x+) can be made true through decomposition of a task (xh) in states where xφ

are true. In this case, the regression is performed over the postconditions of the

annotated task and the preconditions of the method learned for that task. Given

a set of goals g and a task network w, we can find the set g′ = R(g, w) with the

following extension of the regression operator:

• If w is the empty task network, then R(g, w) = g.

• If w contains a single primitive task t that corresponds to the action a =

(t, aφ, a−, a+) and a+ ∩ g 6= ∅, then R(g, w) = (g \ a+) ∪ aφ.

• If w contains a single primitive task t that corresponds to the action a =

(t, aφ, a−, a+) and a+ ∩ g = ∅, then R(g, w) = g.
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• If w contains a single nonprimitive task t for which there exists an indexed

method instance x = (t, x+, xw, xφ, xb, xe) and x+ ∩ g 6= ∅, then R(g, w) =

(g \ x+) ∪ xφ.

• If w contains a single nonprimitive task t for which there exists an indexed

method instance x = (t, x+, xw, xφ, xb, xe) and x+ ∩ g = ∅, then R(g, w) = g.

• If w contains two or more tasks 〈t0, t1, . . . , tn〉, then R(g, w) = R(R(g, 〈tn〉),
〈t0, t1, . . . , tn−1〉).

The value of R(g, w) is the minimal set of atoms that must be true in a state s′

to guarantee that w will be decomposable resulting in a plan that produces a state

s where g holds.

The Learn-Method subroutine uses this regression operator to determine a

sequence of tasks that accomplishes an annotated task and the conditions under

which it will do so, which become the subtasks and preconditions of a new method.

It is not quite a straightforward implementation of the regression operator because

the task network through which goals should be regressed is not known in advance

and must be created.

Algorithm 7 shows a high-level pseudocode for the Learn-Method procedure.

The input to Learn-Method consists of a plan, a state trajectory induced by that

plan, an annotated task, a finite set of method instances indexed into that state

trajectory, and initial and final indices specifying a subplan in which the annotated

task is accomplished. The algorithm begins by initializing a set of open conditions

φ as the positive effects of the annotated task (Line 3). These are the goals that

will be regressed through the actions of the subplan and relevant indexed method

instances. It additionally initializes an empty task network w and current action

index c (Lines 4 - 5). The task network w will eventually become the subtasks of

the method learned in this call to Learn-Method.

The current state index begins at the very end of the subplan and moves back-

wards to the initial state of the subplan (Line 6). Within this loop, the algorithm

initializes an empty set of potentially useful indexed method instances (Line 7). An
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Algorithm 7: The Learn-Method procedure that performs hierarchical
goal regression over HTNs. The inputs are a plan π, a state trajectory ~Sπ, an
annotated task τ , a finite set of indexed method instances X, and indices for
an initial state i and final state f . The output is a new method m.

Procedure Learn-Method(π, ~Sπ, τ,X, i, f)1

begin2

φ← τ+
3

w ← 〈〉4

c← f5

while c > i do6

X ′ ← ∅7

foreach x = (xh, x+, xw, wφ, xb, xe) ∈ X do8

if c = xe ∧ i ≤ xb ∧ x+ ∩ φ 6= ∅ then9

X ′ ← X ′ ∪ {x}10

ac ← the c-th action in π11

if a+
c ∩ φ 6= ∅ then12

X ′ ← X ′ ∪ {(ahc , a+
c , 〈〉, aφc , c− 1, c)}13

X ′ ← X ′ ∪ {(nop, ∅, 〈〉, ∅, c− 1, c)}14

nondeterministically select x = (xh, x+, xw, xφ, xb, xe) ∈ X ′15

φ← (φ \ x+) ∪ xφ16

if xh 6= nop then17

w ← 〈xh〉 · w18

c← xb19

m = (τh, φ ∪ τφ, w)20

return m21

end22

indexed method instance is deemed potentially useful if it fulfills three criteria: the

current state is the end state of the method instance, the initial state is no later

than the begin state of the initial state, and there exists an atom in both the open

conditions and the positive effects of the method instance (Lines 8 - 10). The first

two criteria ensure that this indexed method instance applies to the subplan cur-

rently being considered, while the last ensures that this indexed method instance

helped to accomplishing the open conditions. Furthermore, the action that resulted

in the current state (ac) is potentially useful if there exists an atom in both the open

conditions and the positive effects of the action (Lines 12 - 13). (In this presentation
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of the algorithm, I create a structure that might be called an indexed action instance

to store information the action. This information is not actually stored with the

indexed method instances, but it is convenient to present it as such.) Finally, doing

nothing, represented as “nop”, is not useful (in that it does not contribute to the

open conditions), but may also be selected (Line 14).

The algorithm makes a nondeterministic choice between one of the potentially

useful indexed method instances (if any exist), the action (if it was useful), and

the “nop” (Line 15). The open conditions are regressed through the selection by

removing any open condition that is also a positive effect of the indexed method

instance or action and adding the preconditions of the indexed method instance or

action (Line 16). If an indexed method instance or the action was selected, its head

is prepended to the task network (Line 18). The current state index is moved back

to the last state before the subplan covered by the indexed method instance (or

to the previous state if the action or “nop” was selected) (Line 19), and the loop

continues with the new value of c.

When the entire plan has been processed, a new method is created (Line 20). The

head of this new method is the annotated task that was accomplished. The subtasks

are the collected heads of the indexed method instances and actions through which

the positive effects of the annotated task have been regressed, and the preconditions

are the remaining open conditions and any preconditions of the annotated task itself.

The action of the HTN-Maker and Learn-Method algorithms is best demon-

strated through an example, which is shown in the following section.

3.3 Example

Consider the following state in the Blocks-World domain: blocks C and B are on

the table, block A is on block C, and there are no other blocks. That state, combined

with the plan <(!Unstack A C), (!Stack A B), (!Pickup C), (!Stack C A)>

forms a learning example. In addition to the Make-2Pile and Invert-2Pile anno-

tated tasks from Figure 3.1, suppose that there exist analogous tasks for piles of 1
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and 3 blocks. We will demonstrate the HTN-Maker algorithm with the classical

planning domain for Blocks-World, a set containing the aforementioned learning

example, a set containing these annotated tasks, and an empty set of methods as

its input.

1 (Make-1Pile C)

(!Unstack A C)

3 (Make-2Pile A B)

(!Unstack A C) 2 (Make-2Pile A B)

(!Stack A B)

7 (Make-3Pile C A B)

(!Unstack A C) 6 (Make-3Pile C A B)

(!Stack A B) 5 (Make-3Pile C A B)

(!Pickup C) 4 (Make-3Pile C A B)

(!Stack C A)

Figure 3.2: Example of decomposition trees obtained by HTN-Maker

Figure 3.2 shows one particular structure of methods that HTN-Maker might

learn from this input, depending on what nondeterministic choices are made. The

first subplan that HTN-Maker would consider is 〈 (!Unstack A C) 〉. This sub-

plan does not result in the creation or inversion of any piles of size 2 or 3, but it does
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create a pile of size 1. Namely, block C becomes a pile of size 1 because it is on the

table and no longer has anything above it. Thus, the Learn-Method procedure

will be called for this subplan and the Make-1Pile annotated task. Initially the

open conditions are (on-table C) and (clear C). There are initially no indexed

method instances, but the action (!Unstack A C) does provide one of the open con-

ditions, (clear C). After regression through this action, the new open conditions

become (on-table C), (on A C), (clear A), and (hand-empty). That is the end

of this subplan, so Learn-Method produces a method that has (!Unstack A C)

as its only subtask and the open conditions listed above as its preconditions. This is

marked as method 1 in the figure. HTN-Maker would add this new method to its

list of methods and create an indexed method instance describing how that subplan

accomplished the task. The first segment of Figure 3.2 shows this simple hierarchy.

Next, HTN-Maker would consider the subplan 〈 (!Stack A B) 〉. In this

case, the Make-2Pile annotated task has been accomplished. The initial open

conditions would be (on-table B), (on A B), and (clear A). The only existing

indexed method instance does not fit within this subplan. (It began in state 0 and

ended in state 1, while the system is now considering the subplan from state 1 to

state 2.) However, the action (!Stack A B) is potentially useful. It produces both

(on A B) and (clear A). After regression through this action, the open conditions

would be (on-table B), (clear B), and (holding A). Thus, method 2 has these

as its preconditions and (!Stack A B) as its only subtask.

The next loop is for subplan 〈 (!Unstack A C), (!Stack A B) 〉 (that is, state

0 to state 2). Once again, the Make-2Pile annotated task has been accomplished,

and the initial open conditions are (on-table B), (on A B), and (clear A). Now

there is an indexed method instance that ends at the current state index and begins

no earlier than the initial state index: the one associated with method 2 that was

just learned. The positive effects associated with this indexed method instance are

the positive effects of the annotated task that it explains, which also happens to

be the annotated task for which a method is currently being learned. As a result,

this indexed method instance provides all of the initial open conditions. The new

open condition list is the same as the preconditions of method 2: (on-table B),
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(clear B), and (holding A). Instead of this indexed method instance, the algo-

rithm could have nondeterministically chosen the action (!Stack A B) or a “nop”,

but for the purposes of this example, suppose that it did not. With the current

state index decremented, the indexed method instance associated with method 1

that was learned from the 0-1 subplan covers the proper portion of the plan. How-

ever, it is not potentially useful because its only positive effects are (on-table C)

and (clear C), neither of which is an open condition. Instead, the algorithm selects

the action (!Unstack A C), which is potentially useful. After regressing through

this action, the open condition list is (on-table B), (clear B), (on A C), (clear

A), and (hand-empty). Thus, method 3 has these preconditions and the subtasks

〈 (!Unstack A C), (Make-2Pile A B) 〉. This hierarchy is shown in the second

segment of Figure 3.2.

This example followed a particular set of nondeterministic choices in the cre-

ation of method 3, and several others could be made as well. In fact, the system

could create a method for the Make-2Pile annotated task from this subplan with

any of the following subtask lists: 〈〉, 〈 (Make-2Pile A B) 〉, 〈 (!Stack A B) 〉, 〈
(!Unstack A C), (Make-2Pile A B) 〉, and 〈 (!Unstack A C), (!Stack A B) 〉,
with varying preconditions.

Analysis of further subplans yields methods 4, 5, 6, and 7 in the figure, or po-

tentially many others depending on nondeterministic choices. These seven methods

can be used to solve many problems where the elements of the initial task network

are construction of piles of size 1, 2, or 3, but not all. For example, these methods

do not encode the knowledge necessary to create a pile of size 2 when both blocks

are initially on the table.

3.4 Implementation Details

The generic algorithm described in Section 3.2 is quite flexible, and must be made

significantly less abstract before it can be used as an executable program. Even

the examples of Section 3.3 required making several choices. This section discusses
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how the HTN-Maker algorithm was specialized into the program used in the

experimental evaluation.

3.4.1 Removing Nondeterminism

The most obvious missing component is a mechanism for making the nondetermin-

istic choice at Line 15 in Algorithm 7. Early versions of HTN-Maker tried all

possible choices, and thus learned not a single method from each call to Learn-

Method, but rather quite a few. This approach worked, but resulting in learning

what were essentially many ways of describing the same problem-solving strategy.

Brevity in an HTN domain description is valuable both for computer programs that

must use the set of methods and for humans who wish to read and understand them,

so this redundancy was deemed inappropriate.

Another possibility would be to make a single, arbitrary selection and never

backtrack. This would result in learning only one way to express a problem-solving

strategy, but perhaps a different way for each such strategy. In addition to making

it difficult to understand how the learned methods are supposed to work, this may

select suboptimal or even useless ways of expressing a particular strategy.

Consider again the plan and annotated tasks used in Section 3.3. There were five

different ways in which the first two actions could be grouped into a task hierarchy,

which would result in the five different methods of Figure 3.3.

When Learn-Method is called for this subplan (that is, i is 0 and f is 2), at its

first nondeterministic choice point it will have three options: the indexed method

instance that was learned from the 1-2 subplan, the action (!Stack A B), and

“nop”. Suppose that it selects “nop”. In that case, at its second nondeterministic

choice point it will have only one option: “nop” again. Making these two selections

produces the method shown in Figure 3.3a. This is a trivial method as described in

Section 3.4.2, and it does provide a useful function. Trivial methods like these allow

the planner to mark a task as accomplished when the postconditions of that task

are already true. However, it is not necessary to learn these methods from traces,

and doing so in this case ignores some useful information about how to accomplish
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( :method

:head

(Make-2Pile ?a ?b)

:precondition

{ (on-table ?b),

(on ?a ?b),

(clear ?a) }

:subtasks

<>

)

(a) Method A

( :method

:head

(Make-2Pile ?a ?b)

:precondition

{ (on-table ?b),

(clear ?b),

(holding ?a) }

:subtasks

< (Make-2Pile ?a ?b) >

)

(b) Method B

( :method

:head

(Make-2Pile ?a ?b)

:precondition

{ (on-table ?b),

(clear ?b),

(holding ?a) }

:subtasks

< (!Stack ?a ?b) >

)

(c) Method C

( :method

:head

(Make-2Pile ?a ?b)

:vars

{ ?c }

:precondition

{ (on-table ?b),

(clear ?b),

(on ?a ?c),

(clear ?a),

(hand-empty) }

:subtasks

< (!Unstack ?a ?c),

(Make-2Pile ?a ?b) >

)

(d) Method D

( :method

:head

(Make-2Pile ?a ?b)

:vars

{ ?c }

:precondition

{ (on-table ?b),

(clear ?b),

(on ?a ?c),

(clear ?a),

(hand-empty) }

:subtasks

< (!Unstack ?a ?c),

(!Stack ?a ?b) >

)

(e) Method E

Figure 3.3: Several methods resulting from different choices
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this task when its postconditions are not already true. Thus, we would prefer not

to learn this particular method from this trace.

Suppose instead that Learn-Method chooses the method that was learned

from the indexed method instance from the 1-2 subplan. Then it will have two

options when it reaches the nondeterministic choice point for the second time: the

action (!Unstack A C) and “nop”. Suppose that it selects “nop”. Making these two

selections produces the method shown in Figure 3.3b. At first glance this appears

to be a rather useless method, allowing a task to be reduced into another copy of

itself. In fact, it is worse than useless. After using this method, neither the current

state nor the current task list will have changed, which means it is still applicable.

Thus, methods of this form can easily lead an HTN planner into infinite recursion

if the planner does not implement some sort of loop checking.

Suppose that Learn-Method chooses the method that was learned from the

indexed method instances from the 1-2 subplan at its first choice point and the

action (!Unstack A C) at its second choice point. Making these two selections

produces the method shown in Figure 3.3d, and this is in fact the decision that was

made while following the example in Section 3.3. This method, combined with the

method that was learned from the 1-2 subplan, is a very reasonable way to express

the strategy demonstrated in the 0-2 subplan.

Suppose that Learn-Method chooses the action (!Stack A B) at its first

choice point. Then at its second choice point it will have two options: the action

(!Unstack A C) and “nop”. Suppose that it selects “nop”. These two selections

lead to the method shown in Figure 3.3c. Unfortunately, this method is identical

to the one that was learned from the 1-2 subplan, and the information about how

to handle situations where the block ?a is not held has not been captured from the

trace. Thus, the system should avoid learning this method.

Finally, if Learn-Method chooses the action (!Stack A B) at its first choice

point and (!Unstack A C) at its second, it will learn the method shown in Fig-

ure 3.3e. This captures all of the knowledge that we are interested in, but does so

in a way that is not very interesting. Rather than building a hierarchy of methods

that can be used together and potentially with methods learned from other traces,
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this type of choice causes HTN-Maker to learn entire, concrete plans. These can

either be re-used in their entirety or not at all.

In summary, the method of Figure 3.3d is a good choice, the method of Fig-

ure 3.3e is acceptable but less interesting, and other options are either not needed

or actively harmful. To learn methods of the type shown in Figure 3.3d and avoid

learning all of the other types, the implementation of the HTN-Maker algorithm

follows the following rules:

1. If at least one potentially useful indexed method instance exists, choose one of

them. Among these, choose the one that “covers” the longest subplan. That

is, the one with lowest xb value. If several are tied for longest, choose one

arbitrarily and do not backtrack.

2. If there are no potentially useful indexed method instances and the current

operator is potentially useful, select it.

3. Only select “nop” when neither of the above is true.

Following these rules, HTN-Maker will learn the method of Figure 3.3d and

make the choices followed in Section 3.3.

Why is the “nop” choice needed at all? It allows HTN-Maker to learn correctly

from traces that contain actions that are legal but do not contribute to achieving the

task that HTN-Maker is currently analyzing. A long trace in a complex domain

will have many such actions for each call to Learn-Method.

3.4.2 Trivial Methods

In Section 3.4.1, we referred to the method of Figure 3.3a as a “trivial method”.

This name derives from the fact that these methods are used when a task can be

accomplished trivially, by the empty plan. Scenarios in which such a task appears

in an HTN planning problem are not uncommon for three reasons. First, most

planning problem generators do not take care to ensure that the goals of a problem

are not true in the initial state, and if they did the space of expressible problems
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would decrease. Second, in a complex problem it is likely that accomplishment of

some tasks will have the serendipitous side effect of accomplishing other, unrelated

tasks in the network. Finally, the recursive nature of methods means that a “base

case” is necessary, although that base case is usually a method that reduces to a

single primitive subtask rather than the empty task network.

Because trivial methods are important and do not require a demonstration from

which to be learned, HTN-Maker begins by searching the domain to see if they

exist before processing any learning examples. If they do not, it creates one for each

annotated task in a straightforward process. The head of the trivial method is the

same as the head of the annotated task. The preconditions of the trivial method

are the union of the preconditions and positive effects of the annotated task. The

subtasks of the trivial method are the empty task network.

3.4.3 Verification Tasks

As will be discussed in Section 3.5.1, there are situations in which the generic HTN-

Maker algorithm can learn methods that can be used to perform reductions that

do not result in the positive effects of their annotated tasks being true. One way

to avoid this issue is to add additional infrastructure into the domain to verify that

a task has been (and remains) accomplished. The idea is that the final task in

each method that is learned will be a special one that can only be reduced by a

trivial method. Because it is not always needed, support for this is provided as a

configuration option of HTN-Maker.

Definition 43. A verification task is simply a (non-annotated) nonprimitive task.

There must be one unique verification task associated with each annotated task used

in a domain.

Definition 44. Given an annotated task τ = (τh, τφ, τ+) and its associated ver-

ification task t′, the verification method for τ has the following form: m =

(t′, τφ ∪ τ+, 〈〉).

When the use of verification tasks is enabled, HTN-Maker begins by creating
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a verification task for each annotated task (through simple name-mangling) that

does not already have one. It then creates a verification method for each annotated

task that does not already have one. This verification method is used to reduce

the verification task into the empty task network in a state in which both the

preconditions and positive effects of the annotated task hold. Every time Learn-

Method creates a new method, it inserts the verification task associated with the

head at the end of its subtasks. Thus, any sound algorithm for solving HTN planning

problems will also automatically enforce the relationship between tasks and goals.

3.4.4 Subsumption

I have previously mentioned the advantage of brevity in an HTN planning domain

description. Thus, the system should avoid adding methods that do not increase the

number of problems that could be solved or represent a new way to solve a problem.

A first, straightforward step to accomplish this is to avoid adding a method if an

equivalent one already exists.

Definition 45. A method m1 = (mh
1 ,m

φ
1 ,m

w
1 ) is equivalent to another method

m2 = (mh
2 ,m

φ
2 ,m

w
2 ) if and only if there exists substitutions u and u′ such that mh

1 =

u(mh
2), mφ

1 = u(mφ
2), mw

1 = u(mw
2 ), mh

2 = u′(mh
1), mφ

2 = u′(mφ
1), and mw

2 = u′(mw
1 ).

However, preventing the addition of duplicate methods is not in itself sufficient.

The system should also avoid adding a method m′ if it can guarantee that in every

situation in which it would be applicable to a state and task network there already

exists another method m that will be applicable and that will have the same results.

We say that method m subsumes method m′ if this is the case.

Definition 46. A method m1 = (mh
1 ,m

φ
1 ,m

w
1 ) subsumes another method m2 =

(mh
2 ,m

φ
2 ,m

w
2 ) if and only if there exists a substitution u such that mh

1 = u(mh
2),

mφ
1 ⊆ u(mφ

2), and mw
1 = u(mw

2 ).

HTN-Maker has an option to check for and remove subsumed methods. When

this option is active, after each call to the Learn-Method subroutine it tests each
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existing method to see whether or not it subsumes the newly learned one. If any do,

the newly learned method is discarded. Otherwise, it then tests to see if any existing

methods are subsumed by the newly learned one before adding it. If any do, they

are removed. When this option is inactive, HTN-Maker instead tests every newly

learned method for strict equivalence with all existing methods and discards it only

if it is equivalent to an existing method. The algorithms for checking subsumption

and equivalence require standardizing apart the variables used in the two methods

and then exhaustively searching for a substitution that meets the requirements of

the definition.

There are no simple examples in the Blocks-World planning domain where

one method would subsume another but not be equivalent to it, so we will introduce

a second common domain here, Logistics [88]. The Logistics domain models the

problem of delivering packages from one location to another. Objects in the world

include packages, cities, locations within cities (some of which are airports), trucks,

and airplanes. Packages may be loaded into a truck or airplane if the package and

vehicle are in the same location, and may be unloaded from a truck or airplane to

the current location of the vehicle. Trucks may travel between any two locations

within the same city, while airplanes may travel between any two locations that are

airports. The basic annotated task in this domain is to deliver a specific package to

a specific location.

Unlike the Blocks-World domain, Logistics includes a variety of types of

objects that can be interacted with in different ways. To simplify the description of

the domain, we use a simple, non-hierarchical type system in which the type of a

constant or variable is given when that term is declared.

Figure 3.4a shows the basic annotated task for the Logistics domain, and the

rest of Figure 3.4 shows three methods that could be learned to accomplish that

task. The method of Figure 3.4b is more general than the method of Figure 3.4c,

because it does not require that the location ?b be an airport. Thus, we expect that

the method of Figure 3.4b should subsume the method of Figure 3.4c. Indeed it

does, with substitution {?d/?a, ?e/?b, ?f/?c}.
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( :annotated-task

:head

(Deliver ?obj - package

?dest - location)

:precondition

{}

:positive-effects

{ (pkg-at ?obj ?dest) }

)

(a) Annotated Task

( :method

:head

(Deliver ?a - package

?b - location)

:vars

{ ?c - truck }

:precondition

{ (truck-at ?c ?b),

(in-truck ?a ?c) }

:subtasks

< (UnloadTruck ?a ?c ?b) >

)

(b) Method A

( :method

:head

(Deliver ?d - package

?e - location)

:vars

{ ?f - truck }

:precondition

{ (truck-at ?f ?e),

(in-truck ?d ?f),

(is-airport ?e) }

:subtasks

< (UnloadTruck ?d ?f ?e) >

)

(c) Method B

( :method

:head

(Deliver ?g - package

?h - location)

:vars

{ ?i - truck,

?j - truck }

:precondition

{ (truck-at ?i ?h),

(in-truck ?g ?i),

(in-truck ?g ?j) }

:subtasks

< (UnloadTruck ?g ?j ?h) >

)

(d) Method C

Figure 3.4: An annotated task and several methods to achieve it
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The relationship between the method of Figure 3.4b and the method of Fig-

ure 3.4d is not so obvious. The latter involves two different truck variables, ?i and

?j, such that truck ?i is known to be at location ?h, package ?g is known to be in

both trucks, and the instruction is to unload package ?g from truck ?j at location

?h. An observant human with an intuitive understanding of the domain physics

will recognize that a package may not simultaneously be inside two different trucks,

and thus that this method will only be applicable when variables ?i and ?j are

replaced by the same constant. This means that the two methods are functionally

equivalent, even though they are not logically equivalent. However, the method

from Figure 3.4b subsumes the method from Figure 3.4d with substitution {?g/?a,

?h/?b, ?i/?c, ?j/?c}. There is no subsumption in the opposite direction.

3.4.5 Generalization

The actions in a plan π of a learning example are entirely grounded. The terms in

an HTN method, however, are generally variables. When an HTN planning system

uses a method, it applies a substitution to it that makes it ground. Thusfar I have

glossed over the issue of how HTN-Maker generalizes from constants in a plan to

variables suitable for a method. This is both because it would be too complex to

introduce with the main algorithm and because there are multiple possible design

choices that could be made.

On Line 12 of Algorithm 6, HTN-Maker actually searches for a substitution

u∗ such that u∗(τφ) ⊆ si and u∗(τ+) ⊆ sf , and calls the Learn-Method subrou-

tine for each such substitution that can be found. The substitution u∗ that maps

variables in the annotated task to constants in the state trajectory is passed to the

Learn-Method subroutine as an additional parameter. When Learn-Method

returns on Line 13 of Algorithm 6 it returns both the new method m and an updated

substitution u∗, which is stored as part of the indexed method instance.

On Line 8 of Algorithm 7, each indexed method instance contains an additional

component named xu, which is a substitution that maps each variable that appears

in any of xh, x+, xw, and xφ to constants from the state trajectory.
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On Line 9 of Algorithm 7, Learn-Method searches for a substitution u such

that c = xe, i ≤ xb, and u(xu((x+)) ∩ φ 6= ∅. The substitution u maps variables in

the indexed method instance to variables in the outstanding precondition list, which

could have come from the positive effects of the annotated task or from preconditions

of previously added subtasks. For each such substitution, the pair (x, u) is actually

added to the list of potentially useful indexed method instances. Line 12 similarly

searches for an appropriate substitution u.

Once a (x, u) pair has been selected, there are at least two ways in which the

variables in xu may be integrated with those already mapped in u∗. I refer to

the possibility that produces more general methods as weak generalization and the

possibility that produces more specific methods as strong generalization.

In weak generalization, variables in xu are unified with variables in u∗ only

if they appear in u as well. That is, these variables are only unified if doing so

is necessary to represent the fact that this indexed method instance or action is

fulfilling an outstanding precondition. For example, if (on ?a ?b) is part of the

open condition list and u∗ includes {?a/B12, ?b/B3} and (on ?x ?y) is a positive

effect of the indexed method instance or action such that xu includes {?x/B12,

?y/B3}, then u will include {?x/?a, ?y/?b}, and so ?x will be unified with ?a and

?y will be unified with ?b.

Otherwise, variables used in the indexed method instance or action become new

variables in u∗. For example, suppose that u∗ also contains {?c/B5, ?d/B7, ?e/B1},
and that none of these variables appear in u. Even if xu contains {?z/B7}, ?z will

not be unified with ?d. Thus, when an HTN planner uses the method that is being

built, it will be free to map ?z and ?d to the same constant or to different constants,

as makes sense for the current state and task network.

In strong generalization, on the other hand, all variables in xu will be unified

with variables in u∗ as long as each are mapped to the same constant. Furthermore,

additional preconditions are added that will prevent an HTN planner from mapping

two variables of the same type to the same constant. (Variables of different types

could not be mapped to the same constant regardless of this.) In the example above,

?x would be unified with ?a, ?y would be unified with ?b, and ?z would be unified
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with ?d. Preconditions would be added to ensure that ?x, ?y, ?z, ?c, and ?e all

refer to distinct objects at all times.

HTN-Maker includes a switch that allows either weak or strong generalization

to be selected. Methods learned using strong generalization will be applicable in the

same or fewer situations than methods learned using weak generalization. However,

this may be a good thing as methods could be applicable even when they are not

useful, and such overly-applicable methods would slow down a planner.

( :method

:head

(Deliver ?p - package

?y - location)

:vars

{ ?x - location,

?z - location,

?t - truck }

:precondition

{ (package-at ?p ?x),

(truck-at ?t ?z) }

:subtasks

< (!Drive-Truck ?t ?z ?x),

(Deliver ?p ?y) >

)

(a) Weak Generalization

( :method

:head

(Deliver ?p - package

?y - location)

:vars

{ ?x - location,

?t - truck }

:precondition

{ (package-at ?p ?x),

(truck-at ?t ?y),

(not (= ?x ?y)) }

:subtasks

< (!Drive-Truck ?t ?y ?x),

(Deliver ?p ?y) >

)

(b) Strong Generalization

Figure 3.5: Two example methods that could be learned in the Logistics domain

The difference between weak and strong generalizations is demonstrated in the

two similar methods of Figure 3.5, which are for the Logistics domain that was first

introduced in Section 3.4.4. The first uses weak generalization, while the second uses

strong generalization. Both deliver a package to a location first by driving a truck

to where the package is, then recursively trying to deliver (presumably by loading

it into the truck, driving the truck to the destination, and unloading it there). The

subtle difference is that the first drives the truck from a location ?z, which has

no constraints other than that the truck be located there, while the second drives
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the truck from location ?y, which is also used in the head of the method. Thus,

the second method will only be applicable when the truck happens to start in the

package’s desired destination, while the first will work regardless of where the truck

begins. In this case it is not relevant that the starting location of the truck and the

destination of the package happened to be the same in the example from which the

method was learned, and so the weak generalization version is preferable.

3.5 Properties

In this section we will discuss the soundness and completeness properties of the

HTN-Maker algorithm, the computational complexity of the algorithm, and the

types of problems that can be expressed using methods learned by HTN-Maker.

3.5.1 Soundness

The notion of soundness for this work is related to the equivalence between a goal and

an annotated task, and through that the equivalence between a classical planning

problem and an HTN planning problem. Specifically, the annotations on a task

should be treated as a contract, with a requirement that all methods learned for an

annotated task are guaranteed to abide by that contract (causing the positive effects

to become true). Informally, the learning algorithm is sound if it is impossible to use

the methods it learns to completely decompose an annotated task without causing

the positive effects of that annotated task to become true in the resulting state.

Definition 47. An algorithm for learning HTN methods using annotated tasks is

sound if and only if, for every classical planning problem in the domain, every

solution produced by a sound HTN planning procedure using the learned methods

for the HTN-equivalent to that classical planning problem is also a solution to that

classical planning problem.

Surprisingly, the generic HTN-Maker procedure described in Section 3.2 is not

sound. Given poorly-designed annotated tasks, it can learn methods for a task that
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can be used in a way that does not cause the positive effects of that task to become

true. This possibility exists because in a series of nonprimitive tasks, a particular

valid reduction of a later nonprimitive task may negate a required positive effect of

an earlier nonprimitive task. Consider a concrete example illustrating this situation.

( :annotated-task

:head

(Make-2Pile ?x ?y)

:precondition

{}

:positive-effects

{ (on ?x ?y) }

)

(a) Annotated Task A

( :annotated-task

:head

(Make-3Pile ?x ?y ?z)

:precondition

{}

:positive-effects

{ (on ?x ?y),

(on ?y ?z) }

)

(b) Annotated Task B

Figure 3.6: Alternate annotated tasks for the Blocks-World domain

< (!Stack B C), (!Pickup A),

(!Stack A B) >

(a) Plan A

< (!Unstack B C), (!Putdown B),

(!Pickup A), (!Stack A B) >

(b) Plan B

Figure 3.7: Two plans in the Blocks-World domain

Consider the annotated tasks shown in Figure 3.6, which could be used in the

Blocks-World domain. These tasks are used for creating piles of varying numbers

of blocks, but unlike the task of Figure 3.1 these allow piles to be nested. That is, if

A is on B and B is on C, then A-B-C is a 3-pile, A-B is a 2-pile, and B-C is a 2-pile, and

these statements are true regardless of whether or not there are additional blocks

below C or above A. This is not necessarily a wise way to define annotated tasks for

the Blocks-World domain, but it is perfectly valid.

Suppose that the plan shown in Figure 3.7a is executed from the following initial

state: {(on-table A), (on-table C), (clear A), (clear C), (holding B)}. In
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( :method

:head

(Make-3Pile ?x ?y ?z)

:precondition

{ (on-table ?x),

(clear ?x),

(clear ?z),

(holding ?y) }

:subtasks

< (!Stack ?y ?z),

(Make-2Pile ?x ?y) >

)

(a) Method A

( :method

:head

(Make-2Pile ?x ?y)

:vars

{ ?z }

:precondition

{ (on-table ?x),

(clear ?x),

(on ?y ?z),

(clear ?y),

(hand-empty) }

:subtasks

< (!Unstack ?y ?z),

(Make-2Pile ?x ?y) >

)

(b) Method B

Figure 3.8: Two methods that could be learned from the plans of Figure 3.7 and
annotated tasks of Figure 3.6

(Make-3Pile A B C)

(!Stack B C) (Make-2Pile A B)

(!Unstack B C) (Make-2Pile A B)

(!Putdown B) (Make-2Pile A B)

(!Pickup A)(Make-2Pile A B)

(!Stack A B)

Figure 3.9: An example decomposition tree including the methods of Figure 3.8
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addition to many others, HTN-Maker could learn the method shown in Figure 3.8a

from this learning example. Also suppose that the plan shown in Figure 3.7b is

executed from the following initial state: {(on-table A), (on-table C), (on B

C), (clear A), (clear B), (hand-empty)}. In addition to many others, HTN-

Maker could learn the method shown in Figure 3.8b from this learning example.

The method shown in Figure 3.8a seems logical: the first subtask puts the bottom

part of the pile together, then the second subtask completes the top part of the pile.

Unfortunately, there is no way for this method to guarantee that the way the planner

chooses to accomplish the second subtask will not destroy the bottom part of the

pile. Indeed, the method shown in Figure 3.8b will do exactly that. Figure 3.9 shows

a complete decomposition in which both of these methods are used. Executing the

leaves of this tree from the state {(on-table A), (on-table C), (clear A), (clear

C), (holding B)} does not result in a state where (on B C) is true. Thus, this plan

is not sound relative to the annotations on the Make-3Pile task. While not identical,

this issue is closely related to the Sussman anomaly discussed in Section 2.1.2.

Fortunately, there are two relatively straightforward modifications to the HTN-

Maker algorithm, either of which will make it sound. Section 3.4.3 discussed

verification tasks and verification methods. I will shortly demonstrate that the

inclusion of verification tasks and methods is sufficient to guarantee the soundness

of the algorithm. The other idea is to restrict the nondeterministic choices in HTN-

Maker to a greater degree than is discussed in Section 3.4.1. Before providing more

detail, I state and prove several useful lemmas.

Lemma 1. Let Σ[c] be a classical planning domain, E be a finite set of learning

examples for that domain, and T be a finite set of annotated tasks for that domain.

Let M be the result of HTN-Maker(Σ[c], E, T , ∅).

Then, for each annotated task τ = (τh, τφ, τ+) ∈ T there exists a method m =

(τh, τφ ∪ τ+, 〈〉) ∈M .

Proof. The method m is the trivial method, which is always created if it does not

already exist, as described in Section 3.4.2.

Lemma 1 simply states that there is a base-case method for each annotated task
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that allows that task to be reduced to the empty task network when in a state where

both the preconditions and postconditions of the annotated task hold.

Lemma 2. Let Ψ[c] = (Σ[c], s0, g) be a classical planning problem with Σ[c] =

(C,P,O), and Ψ[h] = (Σ[h], s′0, w0) be its equivalent HTN planning problem with

Σ[h] = (C ′, P ′, O′, T,M) for some tasks T and methods M . Let π = 〈a0, a1, . . . , an〉
be a plan produced by a sound HTN planning algorithm as a solution to Ψ[h].

Then, π is applicable to the initial state of Ψ[c], which is s0.

Proof. Because Ψ[h] is the HTN equivalent to Ψ[c], s0 = s′0, C = C ′, P = P ′, and

O = O′. If π is the empty plan, it is trivially applicable to s0. If π consists of a

single action a0, then that action must be applicable to s′0, and thus to s0. If π

consists of multiple actions, then the first is applicable to s0 by the logic above. The

result of applying a0 to s′0 will be s′1. The same logic as above requires that a1 be

applicable to s′1, and likewise for all (ai, si) pairs. Because s0 = s′0, all of the above

follows for the classical planning problem as well.

Note that the proof of Lemma 2 is not dependent on any properties of the

methods in M . Rather, it follows directly from the definition of an HTN equivalent

planning problem and a sound HTN planning algorithm.

Theorem 1. Let Σ[c] = (C,P,O) be a classical planning domain, E be a finite set

of learning examples for that domain, and T be a finite set of annotated tasks for

that domain. Let M be the result of HTN-Maker(Σ[c], E, T , ∅) with verification

tasks and methods enabled. Let Ψ[c] = (Σ[c], s0, g) be a classical planning problem

and Ψ[h] = (Σ[h], s′0, w0) be the equivalent HTN planning problem with Σ[h] =

(C ′, P ′, O′, T,M). Let π be a plan produced by a sound HTN planner as a solution

to Ψ[h].

Then, π is a solution to Ψ[c] (and thus, HTN-Maker with verification tasks

and methods enabled is sound).

Proof. In order to prove that π is a solution to Ψ[c] we must show both that it is

applicable to s0 and that it produces a state in which g holds. Lemma 2 guarantees

the first part. The remainder of this proof demonstrates the second part.
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Because Ψ[h] is the equivalent HTN planning problem to Ψ[c], s0 = s′0, C = C ′,

P = P ′, and O = O′. Furthermore, there exists an annotated task τ = (τh, ∅, g) ∈ T
such that w0 = 〈τh〉.

If π is the empty plan, then the task τh must have been reduced using the method

described in Lemma 1. Thus, g ⊆ s′0. Since s′0 = s0 and there are no actions in the

plan, s′0 is the result of applying π to s0, and we have shown that it satisfies the

goals.

If π is not the empty plan, then some reductions were performed using learned

methods to produce it. Consider the method used for the very first reduction.

Because it was generated by HTN-Maker with verification tasks enabled, its final

subtask will be a verification task t′. There exists one and only one method, m =

(t′, g, 〈〉) for this verification task. The very last step taken by the HTN planner

to produce π will have been a reduction of this verification task using that only

method. Because this method was applicable, the planner’s current state was one

in which the goals were satisfied. Because this is the last step, that current state is

also the final state resulting from the application of π to s0.

In some cases it may not be desirable to use verification tasks. An alternative

is to restrict the way HTN-Maker forms methods to disallow potentially unsound

constructs from being learned. Specifically, restricting HTN-Maker to only learn

right-recursive methods will make it sound. The rules already in use tend to produce

right-recursive methods in most circumstances, and it is simple to force HTN-

Maker to do so in all cases.

Definition 48. An HTN method is right-recursive if and only if any of the fol-

lowing is true:

1. The method has no subtasks.

2. The method has one or more subtasks, all of which are primitive.

3. The method has one or more primitive subtasks followed by a nonprimitive

subtask that is a recursive call to the head of the method.
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Although right-recursion may seem overly restrictive, it is in fact a natural way

(though certain not the only way) to model classical planning domains. In exper-

iments in a variety of standard planning domains, including Logistics, Blocks-

World, Satellite, Rovers, and Zeno, methods of these forms have been suffi-

cient to model the domain effectively.

Lemma 3. Let m = (mh,mφ,mw) be a method learned by HTN-Maker from

some classical planning domain Σ[c], learning example e = (π, s0), and annotated

task τ = (τh, τφ, τ+), such that mw consists of one or more primitive tasks. Let s

be a state in which m is applicable.

Then the postconditions of the annotated task, τ+, hold in the state resulting

from the application of the subtasks of m to s.

Proof. This follows from straightforward application of (non-hierarchical) goal re-

gression. Each atom g ∈ τ+ must be either a positive effect of a primitive task in

mw and not a negative effect of any following task, or a member of mφ.

Theorem 2. Let Σ[c] = (C,P,O) be a classical planning domain, E be a finite

set of learning examples for that domain, and T be a finite set of annotated tasks

for that domain. Let M be the result of HTN-Maker(Σ[c], E, T , ∅) without the

use of verification tasks, but with a restriction that all methods learned must be

right-recursive.

Let Ψ[c] = (Σ[c], s0, g) be a classical planning problem and Ψ[h] = (Σ[h], s′0, w0)

be the equivalent HTN planning problem with Σ[h] = (C ′, P ′, O′, T,M). Let π be a

plan produced by a sound HTN planner as a solution to Ψ[h].

Then, π is a solution to Ψ[c] (and thus, HTN-Maker with a restriction to only

learn right-recursive methods is sound).

Proof. As in the proof of Theorem 1, Lemma 2 demonstrates that π will be appli-

cable in the initial state of Ψ[c]. The rest of this proof demonstrates that π, when

executed in the initial state of Ψ[c], will result in a state in which g holds.

Because Ψ[h] is the equivalent HTN planning problem to Ψ[c], s0 = s′0, C = C ′,

P = P ′, and O = O′. Furthermore, there exists an annotated task τ = (τh, ∅, g) ∈ T
such that w0 = 〈τh〉.
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If π is the empty plan, then the task τh must have been reduced using the method

described in Lemma 1. Thus, g ⊆ s′0. Since s′0 = s0 and there are no actions in the

plan, s′0 is the result of applying w0 to s0, and it has been shown that it satisfies the

goals.

Otherwise, π was produced by either a single reduction using a method with only

primitive subtasks or by a sequence of one or more reductions using tail-recursive

methods followed by a final reduction using a method with only primitive subtasks.

In the former case, Lemma 3 shows that the state resulting from application of

the subtasks of m satisfies the positive effects of the annotated task, and thus the

goals of the classical planning problem.

In the latter case, π = π′ · π′′, where π′ consists of the primitive tasks from

each of the reductions using tail-recursive methods and π′′ is the subtasks of the

non-recursive method, which is used in the final reduction. Let s be the state that

results from applying π′ to s′0 and s′ be the state that results from applying π′′ to s.

Lemma 3 shows that s′ is a state in which g holds. The actions in π′ are irrelevant;

all that matters is that goal regression guarantees that if a non-recursive method m

is applicable in s′, then the positive effects of the annotated task associated with m

will hold in s′′. Because the only nonprimitive tasks allowed are strictly recursive

calls, this is the same annotated task τ .

While either verification tasks or this restriction are necessary for theoretical

soundness, the situations in which unsound behavior could result are very rare in

real domains. For the experiments reported in Chapter 6 I chose to use verification

tasks. As part of the experiments I logged situations in which the planner would

attempt to decompose a verification task, fail and backtrack, and did not record a

single instance of this occurring.

3.5.2 Completeness

The notion of completeness used in this work for an algorithm that learns methods

is based on the ability of an HTN planner to solve all expressible problems using

the methods that are learned.
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Definition 49. Given a classical planning domain Σ[c] and a finite set of annotated

tasks for that domain T , a set of methods M is sufficient to model the domain and

tasks if and only if, for every classical planning problem Ψ[c] = (Σ[c], s0, g) that has

goals g matching an annotated task in T , an HTN planner using M will be able to

solve the HTN equivalent of Ψ[c].

Definition 50. An algorithm for learning HTN methods from annotated tasks and

traces is complete if and only if, for every pair of classical planning domain Σ[c]

and set of annotated tasks T , there exists a finite set of learning examples E from

which the algorithm will learn a set M of methods that is sufficient to model the

domain and tasks.

Before demonstrating that HTN-Maker is a complete algorithm, I introduce

two necessary lemmas.

Lemma 4. Let Σ[c] be a classical planning domain description, T be a set of anno-

tated tasks for the domain, Ψ[c] = (Σ[c], s0, g) be a classical planning problem from

the domain, τ = (τh, ∅, g) ∈ T be the equivalent annotated task to g, and π be a

solution to Ψ[c].

Then, the set of methods M learned by HTN-Maker from a single learning

example e = (s0, π) can be used to solve the HTN-equivalent problem to Ψ[c], Ψ[h] =

(Σ[h], s0, 〈τ〉) with Σ[h] = (C,P,O, T,M).

Proof. If the length of π is 0, then g ⊆ s0, or π would not be a solution to P . Then

the trivial method described in Lemma 1 will be applicable to s0, producing the

empty task network. Thus, Ψ[h] can be solved.

If the length of π is 1, then it consists of an action a = (ah, aφ, a−, a+). Thus,

HTN-Maker would learn a method m = (τh, (g \ a+) ∪ aφ, 〈ah〉). Each member

of g \ a+ must be true in s0, because otherwise it would not be true in s1. Each

member of aφ must be true in s0, because otherwise a would not be applicable to

s0. Therefore, m is applicable in s0. Thus, an HTN planner could reduce τh into

ah, and then apply a to s0, resulting in the empty HTN and a solution to Ψ[h].
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Suppose that the length of π is n > 1, and that this lemma is true for all plans

of length n − 1. Then HTN-Maker will learn a method m = (τh,mφ,mw) from

a call to Learn-Method with i = 0, f = n, and τ , as well as possibly other

methods from calls to Learn-Method with different parameters. Method m will

be applicable to state s0.

Thus, m can be used to reduce 〈τ〉 into mw = 〈t0, t1, . . . , tk〉 from state s0. I will

show that mw can be further reduced (if necessary) with other methods that have

been previously learned into a plan that is applicable to s0.

If t0 is primitive and corresponds to the action a = (ah, aφ, a−, a+), then a must

be applicable to state s0, producing state s − 1. If a were not applicable to state

s0, then some earlier action in the plan would have to have produced an effect that

is a precondition of a, and this additional action would be represented in a subtask

prior to t0.

If t0 is instead nonprimitive, then it corresponds to an indexed method instance

x = (xh, x+, xw, xφ, xb, xe). The method m′ = (xh, xφ, xw) of which x is an indexed

instance must be applicable to s0. Because this method was learned earlier, either

xb > 0 or xe < n. Thus, the portion of π from xb to xe is a plan π′ of length n′ < n.

The inductive hypothesis states that m′ can be used to solve the HTN planning

problem Ψ′[h] = (Σ[h], s0, x
h). Execution of the solution plan to Ψ′[h] results in a

state s′.

The same argument holds for the sub-problem in which 〈t1, t2, . . . , tk〉 must be

decomposed from state s′. Eventually one will reach a sub-problem with no tasks

left to accomplish, and the empty plan will complete the solution. Thus, Ψ[h] can

be solved using the learned methods.

The intuition behind the previous proof is that an HTN planner can replay the

decisions that HTN-Maker observed to re-generate the relevant parts of the plan

π, which is already known to be a solution to Ψ[c].

Lemma 5. Let Σ[c] be a classical planning domain description, T be a set of an-

notated tasks for the domain, and M be a set of methods learned by HTN-Maker
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from any finite set of learning examples E in the domain. Let e = (s0, π) be any

learning example from the domain, which may or may not be a member of E. Let

M ′ be the set of methods that HTN-Maker learns from e when starting from M .

Then, if M can be used to solve a problem Ψ[h] then M ′ can be used to solve

Ψ[h] as well.

Proof. If subsumption checking is not enabled, then HTN-Maker never erases a

method and hence M ⊆ M ′. When subsumption checking is enabled, a method m

is never removed from the set of methods unless a method m′ is being added that

is applicable whenever m is applicable and that encodes the same problem-solving

strategy. Neither adding an additional method nor replacing a method with a more

general version can reduce the set of solvable problems.

Theorem 3. Let Σ[c] = (C,P,O) be a classical planning domain description and

T be a finite set of annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that

the set of methods M generated by HTN-Maker(Σ[c], E, T , ∅) can be used to solve

the HTN equivalent to every classical planning problem expressible using Σ[c] and

T .

Proof. Consider the set S of states representable in Σ[c] and the set of goal state-

ments G that have an equivalent annotated task in T . Every solvable problem in

Σ[c] with an equivalent HTN problem has the form Ψ[c] = (Σ[c], s0, g) where s ∈ S
and g ∈ G. Because the sets C, P , and O are finite, so are the sets S and G, and

because the sets S and G are finite, there are a finite number of such problems.

Let the set of learning examples E consist of the initial state of each such problem

paired with any solution to that problem. Lemmas 4 and 5 state that the methods

that HTN-Maker would learn from the set of learning examples E can be used to

solve the HTN equivalents of each of the problems that form a learning example in

E. I have previously shown that this includes every solvable problem in the domain

that has an HTN equivalent problem using tasks from T .
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Intuitively, this means that HTN-Maker is able to learn a complete HTN de-

scription of any classical planning domain by examining a solution to every express-

ible problem. Although the theoretical result shows only this worst-case behavior,

experience indicates that far fewer problems are needed in practice. In one experi-

ment, an HTN planner was able to solve all solvable Logistics domain problems

that required delivering a single package to a location after learning from six care-

fully chosen learning examples. The experiments described in Chapter 6 show that

in most cases, a few hundred randomly generated learning examples are sufficient.

3.5.3 Expressiveness

One of the advantages of HTN planning over classical planning is that the former

is strictly more expressive than the latter [13]. The relationship is analogous to

that between context-free languages and regular languages. It is clear that if we

restrict ourselves to solving HTN problems that have an equivalent classical planning

problem as discussed in Definition 40, then this advantage is negated. Indeed,

learning methods that can be used to solve any arbitrary HTN planning problem

is quite difficult. Because tasks used in HTN planning problems do not necessarily

affect the state in any regular fashion, this would require a formalism based on some

idea other than goal regression.

However, there are HTN planning problems that have no equivalent classical

planning problem yet can be solved using methods learned by HTN-Maker. We

refer to the set of HTN planning problems that can be solved using methods learned

by HTN-Maker as classically-partitionable planning problems, because they can

be partitioned into a sequence of classical planning problems.

Definition 51. A classically-partitionable planning problem is a triple Ψ[p] =

(Σ[c], s0, G), where Σ[c] is a classical planning domain, s0 is a state in that domain,

and G = 〈g0, gi, . . . , gn〉 is a sequence of sets of goal atoms.

Definition 52. A plan π is a solution to a classically-partitionable planning prob-

lem Ψ[p] = (Σ[c], s0, G) with G = 〈g0, g1, . . . , gn〉 if and only if π may be partitioned
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Figure 3.10: Relationships between classes of planning problems

into a sequence of subplans Π = 〈π0, π1, . . . πn〉 such that π0 is applicable to s0,

producing a state s1 that satisfies the goals g0 and each successive πi is applicable

to state si, producing a state si+1 that satisfies the goals gi.

Definition 53. Two planning problems Ψ and Ψ′ are analogous if and only if every

solution to Ψ is also a solution to Ψ′ and every solution to Ψ′ is also a solution to

Ψ. Ψ and Ψ′ may be classical planning problems, classically-partitionable planning

problems, or HTN planning problems.

Lemma 6. For each classical planning problem Ψ[c] = (Σ[c], s0, g), there exists an

analogous classically-partitionable planning problem Ψ[p].

Proof. Let Ψ[p] be (Σ[c], s0, 〈g〉).

Lemma 7. There exists a classically-partitionable planning problem Ψ[p] =

(Σ[c], s0, G) that does not have an analogous classical planning problem.

Proof. Let Σ[c] be the description of the Blocks-World domain that we have

been using as an example, with A as the only constant. Let s0 be {(on-table A),

(clear A), (hand-empty)}. Let G = 〈g0, g1〉, such that g0 is {(holding A)} and

g1 is {(on-table A)}.
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There are 9 different sensible goal combinations expressible in this domain, and

thus 9 sensible planning problems that use Σ[c] and s0. (I ignore goal states that

are impossible; since no plan will solve them and since Ψ[p] does have a solution,

none of them can be analogous to it.) Of the 9 sensible goal combinations, 8 of

them involve only the three atoms in the initial state. The empty plan is a solution

to each of these problems, but it is not a solution to Ψ[p]. The remaining sensible

goal combination is {(holding A)}. The plan 〈 !PickUp( A ) 〉 is a solution to

this problem, but not to Ψ[p]. Since we have exhaustively examined all classical

planning problems that could possibly be analogous to Ψ[p] and ruled each one out,

there is none.

Lemma 8. For each classically-partitionable planning problem Ψ[p] = (Σ[c], s0, G)

and finite set of annotated tasks T such that each goal set gi in G = 〈g0, g1, . . . , gn〉
has an equivalent annotated task in T , there exists an HTN planning problem Ψ[h]

that is analogous to Ψ[p].

Proof. Let Σ[c] = (C,P,O) and Σ[h] = (C,P,O, T,M), where T contains the heads

of the tasks in T and M is some sufficient set of methods. Let Ψ[h] = (Σ[h], s0, w0),

with w0 = 〈t0, t1, . . . , tn〉, such that each ti is the equivalent annotated task of gi.

Lemma 9. There exists an HTN planning problem Ψ[h] = (Σ[h], s0, w0) that does

not have an analogous classically-partitionable planning problem.

Proof. Let Σ[h] be a domain with two actions, (!First) and (!Second), one task,

AnBn, and two methods for that task. The first method has no preconditions or

subtasks. The second method has no preconditions and the following subtasks: 〈
(!First) (AnBn) (!Second) 〉. Let s0 be the empty set and w0 be 〈 (AnBn) 〉.

Since there are no predicates in this domain, the only possible goal statement is

the empty set. Any classically-partitionable planning problem with each of its goal

statements being the empty set could be solved by the plan 〈 (!First) 〉, but this

does not solve Ψ[h]. Thus, there is no analogous classically-partitionable planning

problem.
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Theorem 4. The set of classically-partitionable planning problems is strictly more

expressive than the set of classical planning problems, but strictly less expressive

than the set of HTN planning problems.

Proof. This follows directly from Lemmas 6 through 9.

Theorem 5. Let Σ[c] = (C,P,O) be a classical planning domain description and

T be a finite set of annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that

the set of methods M generated by HTN-Maker(Σ[c], E, T , ∅) can be used to solve

an HTN analogue to each classically-partitionable planning problem expressible using

Σ[c] and T .

Proof. Theorem 3 guarantees that a set of learning examples exists such that M

will be able to solve the HTN equivalent of any classical planning problem. A

classically-partitionable planning problem can be partitioned into a sequences of

classical planning problems, and a solution to the sequence of their HTN equivalents

will also be a solution to the classically-partitionable planning problem.

3.5.4 Complexity

There are many potential ways to measure the size of the input to HTN-Maker,

which makes complexity analysis difficult. It is clear that the worst-case, average-

case, and best-case running time is directly proportional to the number of learning

examples, since each learning example is processed exactly once. Thus, we could

say that HTN-Maker is a Θ(|E|) algorithm, but this is not very illuminative.

Alternatively, we could consider the length of the longest plan in E, which we

will call Π, and the number of annotated tasks in T . Based on these, in the worst

case the number of times the Learn-Method subroutine is called is bounded

by O(|E| ∗ |Π|2 ∗ |T |). The main loop of the Learn-Method subroutine will

execute at most |Π| times per call to Learn-Method. The inner loop of Learn-

Method that checks each indexed method instance to determine whether or not it

is potentially useful runs once for each method that has previously been learned from
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this trace, which is bounded by |Π|2 ∗ |T |. All other operations are constant with

respect to the number of learning examples, length of longest plan, and number

of annotated tasks. Thus, we could say that the worst-case time complexity of

HTN-Maker is O(|E| ∗ |Π|5 ∗ |T |2).

What about the number of predicates in the domain, the numbers of precondi-

tions, negative effects, and positive effects in the largest action(s), the numbers of

preconditions and positive effects in the largest annotated task(s), and the number

of variables used in various and sundry constructs? All of these control to some ex-

tent the runtime of several lines in the algorithm that are constant with respect to

the measures of input size that we had previously discussed. An in-depth analysis of

these factors would be tedious and of limited value, so we will be satisfied with the

knowledge that the runtime of the generic HTN-Maker algorithm is polynomial

in those factors that would have the most impact.

Most of the implementation details discussed in Section 3.4 do not impact the

complexity of the algorithm, but checking methods for equivalence or subsumption

as explained in section 3.4.4 is worthy of a closer look. This check occurs once

for each call to the Learn-Method procedure, and involves comparing the new

method against all existing methods (twice with subsumption). The number of

existing methods is bounded by |M | + |E| ∗ |Π|2 ∗ |T |. The subsumption checking

problem is analogous to the Associative-Commutative Unification problem, which

is constant with respect to the input size measures that we are considering, but

has been shown to be NP-complete with regard to the number of variables in the

formulas (methods) [36]. As the experiments described in Chapter 6 show, this is

not generally a problem.
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Chapter 4

Learning in Nondeterministic

Domains

Because ND-Shop2 uses standard HTN methods as its knowledge artifacts, some

methods learned by HTN-Maker can be used to solve problems in nondeterministic

domains. However, some particular method structures are poorly suited to solving

these sorts of problems. Thus, I have developed an algorithm HTN-MakerND that

extends HTN-Maker to specifically learn methods that will be useful in nondeter-

ministic domains.

In this section the examples will be based on a version of the Blocks-World

domain in which several actions have multiple possible outcomes. In the deter-

ministic version, the (!Pickup ?a) operator adds (holding ?a) to the state and

removes (on-table ?a), (clear ?a), and (hand-empty) from the state. In the

nondeterministic version this is one of two possible outcomes; the other is that the

state is unchanged. This might represent, for example, the failure of a robotic con-

troller to successfully grasp the block. The (!Putdown ?a), (!Stack ?a ?b), and

(!Unstack ?a ?b) operators will similarly have a second possible outcome in which

the state is unchanged. Additionally, the (!Stack ?a ?b) operator will have a third

outcome, with the same effects we would normally expect from (!Putdown ?a), and

(!Unstack ?a ?b) will also have a third outcome, with the same effects we would

87



CHAPTER 4. LEARNING IN NONDETERMINISTIC DOMAINS

normally expect from (!Unstack ?a ?b) followed by (!Putdown ?a).

4.1 The HTN-MakerND Algorithm

The algorithm for learning methods that will be effective in solving problems in non-

deterministic domains consists of a pre-processing step, a version of HTN-Maker

that has its choices further restricted, and a post-processing step.

In HTN-MakerND, a learning example continues to consist of a state and a

plan, although a plan is not a solution to a problem in a nondeterministic domain.

Instead, from one state and policy many different execution traces may be generated,

each representing what “really happened” during one use of the policy. Although it

has a different origin, an execution trace is functionally equivalent to a plan, and a

learning example can be created for each one.

Consider, for example, the state { (on-table B), (on-table C), (on A C),

(clear A), (clear B), (hand-empty) }. If the goal is to have block A on block

B, the policy shown in Figure 4.1 is a strong-cyclic solution to this problem. The

states are given symbols to ease reference to an individual state, but these are not

part of the policy. The first row of the table states that when in the Γ state (which

is the initial state described above) the agent should take the action (!Unstack A

C). Because of the definition of the nondeterministic action (!Unstack A C), this

will result in one of three states: either Γ, ∆, or Θ. The second row of the table

states that when in the ∆ state the agent should take the action (!Stack A B).

This will result in either the ∆ state, the Θ state, or the Λ state. The third row of

the table states that when in the Θ state the agent should take the action (!Pickup

A). This will result in either the ∆ state or the Θ state. The fourth row states that

the policy is not defined for the Λ state. This is fine, because this state satisfies the

goals.

Figure 4.2 shows the execution structure of this policy applied to the initial state

Γ. An infinite number of different execution traces might be generated by following

this execution structure. Among them are 〈 (!Unstack A C), (!Stack A B) 〉 and
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Symbol State Action
Γ (on-table B) (on-table C) (on A C)

(clear A) (clear B) (hand-empty)

(!Unstack A C)

∆ (on-table B) (on-table C) (clear B)

(clear C) (holding A)

(!Stack A B)

Θ (on-table A) (on-table B) (on-table C)

(clear A) (clear B) (clear C) (hand-empty)

(!Pickup A)

Λ (on-table B) (on-table C) (on A B)

(clear A) (clear C) (hand-empty)

Figure 4.1: A policy in the nondeterministic Blocks-World domain

Γ ∆

Θ Λ

(!Unstack A C)

(!Unstack A C)

(!Unstack A C)

(!Stack A B)

(!Stack A B)

(!Stack A B)

(!Pickup A)

(!Pickup A)

Figure 4.2: The execution structure of the policy shown in Figure 4.1
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〈 (!Unstack A C), (!Unstack A C), (!Stack A B), (!Pickup A), (!Pickup A),

(!Stack A B) 〉.
The HTN-Maker algorithm has no reasoning mechanism for considering mul-

tiple potential outcomes of an action. Rather than creating one, the system pre-

processes each nondeterministic operator into a set of deterministic operators with

similar names. Thus, the 4-operator nondeterministic Blocks-World domain

becomes a 10-operator deterministic Blocks-World domain. When generat-

ing a plan from a policy, it is known which possible outcome actually occurred,

and thus an additional pre-processing step replaces the nondeterministic actions in

the learning examples with their deterministically partitioned counterparts. Thus,

the latter plan listed in the previous paragraph would become 〈 !Unstack2 A C),

(!Unstack1 A C), (!Stack3 A B), (!Pickup2 A), (!Pickup1 A), (!Stack1 A B)

〉. The learning procedure works with these determinized operators and plans, and

produces methods whose primitive tasks are determinized operators. The final post-

processing step after learning is to replace each determinized primitive task in the

subtasks of a method with the nondeterministic version from which it was split.

I have previously mentioned that not all methods are equally useful for solv-

ing planning problems in nondeterministic domains. One obvious way in which a

method could be unfit is to have two or more consecutive primitive subtasks, when

at least one of the possible outcomes of the first subtask is a state in which the sec-

ond subtask is not applicable. When using such a method, ND-Shop2 will create

several pairs of state and task network, and from some of them it will not be able

to continue. Thus, it would need to backtrack and select a different method.

This is the most egregious example of a broader category of trouble: the more

subtasks a method has, the less likely it will be that all possible outcomes of its

early subtasks lead to situations in which its later subtasks can be processed. I

have identified, however, situations in which these sorts of problems cannot occur.

To accomplish this, when learning in nondeterministic domains the choice made in

Line 15 of Algorithm 7 is even more restricted than as described in Section 3.4.1.

Methods that meet this new restriction are nd-friendly. This requirement is similar,

but not equivalent, to the right-recursive property of Definition 48, in that only one
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primitive task is allowed per method, but nonprimitive tasks do not necessarily need

to be recursive. Thus, it is possible for a method to be right-recursive, nd-friendly,

both right-recursive and nd-friendly, or neither.

Definition 54. An HTN method is nd-friendly if and only if any of the following

is true:

1. The method has no subtasks.

2. The method has exactly two subtasks; the first is primitive and the second is

nonprimitive.

When ND-Shop2 uses an nd-friendly method, one of a small number of possible

scenarios occurs. If the method had no subtasks, then it must have been a trivial

method as described in Section 3.4.2, and no further work needs to be accomplished.

Otherwise, application of the first subtask produces a set of pairs of a state and a

task network consisting of the second subtask (followed by any later top-level tasks

that were in the initial problem). In each of those states, HTN-MakerND may

now select an applicable method to what had been the second subtask. In the ideal

case, there will be at least one applicable method for each state. If there is not, this

is due to a lack of knowledge or a dead-end in the domain, not because of a failure

in representation.

4.2 Properties

As is the case when planning in deterministic domains, I show that the use of

methods learned by HTN-MakerND is sound, and that it is possible to learn a

set of methods sufficient for solving all expressible problems in a domain that have

solutions.

Theorem 6. Let Σ[c] = (C,P,O) be a nondeterministic planning domain, and

Σ[c]′ = (C,P,O′) be its determinization by splitting each nondeterministic oper-

ator in O into a set of deterministic operators in O′, one for each possible out-

come. Let E be a finite set of learning examples for Σ[c]′ and T be a finite set of
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annotated tasks for Σ[c]′. Let M be the result of HTN-MakerND(Σ[c]′, E, T , ∅),

after post-processing of determinized primitive tasks back into their nondetermin-

istic versions. Let Ψ[c] = (Σ[c], s0, g) be a nondeterministic planning problem and

Ψ[h] = (Σ[h], s0, w0) be the equivalent nondeterministic HTN planning problem with

Σ[h] = (C,P,O, T,M), τ = (τh, ∅, g), and w0 = 〈τh〉. Let Π be a policy generated

by a sound HTN planner for nondeterministic domains as a strong solution to Ψ[h].

Then, Π is a strong solution to Ψ[c] (and thus, HTN-MakerND is sound with

regard to strong planning).

Proof. Suppose that Π is not a strong solution to Ψ[c]. There are three ways this

could be true:

First, consider the possibility that the execution structure of Π includes a cycle.

This is not possible, because if it were true then Π could not be a strong solution

to Ψ[h].

Alternatively, consider the possibility that there exists a state s reachable by

following Π from s0 such that there is no state s′ such that g ⊆ s′ and s′ is a Π-

descendant of s in the execution structure of Π. That is, there are one or more

states in the execution structure of Π from which it is impossible to reach a state

that satisfies the goals. This could only be true if there existed a state that does not

satisfy the goals but in which the preconditions of the trivial method for τh held,

which is impossible.

Finally, consider the possibility that there exists a state s reachable by following

Π from s0 that does not satisfy the goals and for which the policy specifies no further

action. Again, the only way this could be true of a policy that is a strong solution

to Ψ[h] is if there were a state that does not satisfy the goals but does contain the

preconditions of the trivial method for τh, which is impossible.

Theorem 7. HTN-MakerND is sound with regard to strong-cyclic planning, fol-

lowing the declarations of Theorem 6 with the exception that Π is merely a strong-

cyclic solution to Ψ[h] rather than a strong solution.
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Proof. There are only two ways in which Π could fail to be a strong-cyclic solution to

Ψ[c], corresponding to the second and third possibilities in the proof of Theorem 6,

and the same arguments apply here to show that they are impossible.

Theorem 8. HTN-MakerND is sound with regard to weak planning, following the

declarations of Theorem 6 with the exception that Π is merely a weak solution to

Ψ[h] rather than a strong solution.

Proof. If Π is not a weak solution to Ψ[c], then there does not exist a path from

s0 to a state that satisfies g in the execution structure of Π. Since Π is a weak

solution to Ψ[h], this must mean that there exists a state that does not satisfy g

but does satisfy the preconditions of the trivial method for τh, and as before this is

impossible.

Theorem 9. Let Σ[c] = (C,P,O) be a nondeterministic planning domain descrip-

tion and T be a finite set of annotated tasks for the domain. Then, there exists a

finite set of learning examples E for that domain such that the set of methods M

generated by HTN-MakerND(Σ[c, E, T , ∅) can be used to create a weak solution

for the HTN equivalent to each nondeterministic planning problem expressible using

Σ[c] and T that has a weak solution.

Proof. Theorem 3 already shows this for deterministic planning domains, and a plan

that solves a deterministic planning problem can easily be converted into a policy

that is a weak solution to the nondeterministic version.

Theorem 10. Let Σ[c] = (C,P,O) be a nondeterministic planning domain descrip-

tion and T be a finite set of annotated tasks for the domain. Then, there exists a

finite set of learning examples E for that domain such that the set of methods M

generated by HTN-MakerND(Σ[c], E, T , ∅) can be used to create a strong-cyclic so-

lution for the HTN equivalent to each nondeterministic planning problem expressible

using Σ[c] and T that has a strong-cyclic solution.

Proof. There are a finite number of planning problems in each nondeterministic

planning domain, following the same reasoning as in Theorem 3. As in the proof
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of that theorem I will show that HTN-MakerND is capable of learning sufficient

information from a solution to each of these problems to solve that problem, and

thus that if it learns from a solution to each problem it will be able to solve all

problems. In the case of deterministic planning domains, the solution to a planning

problem was a plan and the information contained in that plan could be extracted

by HTN-Maker into a series of methods that would reproduce its fundamental

properties. In the case of nondeterministic planning domains, the solution to a

planning problem is a policy. Thus, I must show that for each policy Π there are

a finite number of learning examples E such that the methods learned by HTN-

Maker from E will be sufficient to reproduce the policy Π.

The execution structure of a policy has a finite number of states and edges. For

each such state, at most one applicable method needs to be learned (none for states

with no children). Thus, at most one learning example will be needed per state in

the execution structure of the policy.

94



Chapter 5

Estimating HTN Method Values

The methods learned by HTN-Maker and HTN-MakerND are sufficient for solv-

ing HTN planning problems in deterministic and nondeterministic planning do-

mains, respectively, but they do not necessarily find high quality solutions. As plan-

ning technology has improved, the quality of solutions has become an increasingly

important metric by which planning systems are judged [72].

High-quality can have several different meanings when applied to plans. The

most common way of thinking about solution quality is a strict number of actions:

shorter plans are preferred over longer ones. With this metric it is easy to define

an optimal solution to a planning problem: one such that no shorter plan is also a

solution.

In some domains there are actions that are clearly more complicated than others.

For example, we have previously discussed the Logistics domain. If this were

used to produce plans that would be executed in the physical world by humans

and machines, we might argue that driving a truck between two locations is more

expensive in both time and materials than loading a package onto a truck, and that

driving a truck between two locations is less expensive (but slower) than flying an

airplane between those same locations. Thus, we might assign a numeric cost to

each action and prefer plans that take many low-cost actions over those that take

few high-cost actions.

There are other, more complicated ways of measuring plan quality as well.
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Rather than making the truck driving operator have a fixed cost, some systems

would calculate a cost based on the distance it is travelling, or perhaps even the

current weight of the vehicle, traffic levels, or other factors. In overconstrained plan-

ning it may be impossible to accomplish all goals, and a high-quality plan would

be one that achieves as many goals as possible. In other cases a plan might be

considered high-quality if it adheres closely to standard operating procedures, even

if a novel plan would solve the problem with lower cost.

Because plan quality is such a nebulous concept, I have chosen to focus on cost-

based quality metrics, but have attempted to design a framework that is flexible

enough to accommodate some other ideas of plan quality as well.

Learning methods that produce higher-quality plans than the methods that

HTN-Maker already learns would require either re-engineering the system or mod-

ifying the methods that it learns through some sort of post-processing. In either

case, this would be quite difficult. Fortunately, HTN-Maker already learns meth-

ods that can be used to produce high-quality plans in many cases. The problem is

that these “good” methods are mixed with a great number of other methods that

are not so effective.

The default heuristic used by the HTN-Solver planner is that, when multi-

ple methods are applicable to the current state and task network, the one that

was learned first should be explored first, with the other options saved for possible

backtracking. This heuristic works reasonably well in that it encourages solutions

to simple sub-problems to be preferred over solutions to more complex problems,

because of the way HTN-Maker orders the subplans that it analyzes from a sin-

gle learning example. Because HTN-Maker typically uses many learning examples

presented in an arbitrary order, however, there are many cases in which this heuristic

causes suboptimal choices.

Thus, the objective is to design a way that the HTN planner can make an

informed choice as to which of many potentially applicable methods is most likely

to lead to a high-quality plan, and to update its expectations about methods based

on the experience that it gains when using them. Reinforcement learning provides

a natural framework for exploiting and improving such knowledge, so it forms the
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basis of this system.

5.1 A Model For Learning Valued Methods

Recall Algorithm 2, which is a straightforward implementation of an HTN planner,

similar to Shop. In order to model the problem of finding a high-quality solution

to an HTN planning problem as a reinforcement learning problem, the reinforce-

ment learning agent is the procedure that makes a decision (Line 12) when multiple

methods are applicable. The rest of the planning system is the environment.

Automated planning and reinforcement learning use much of the same terminol-

ogy, but describing this system requires the lexicon of both, not used in the same

way. In reinforcement learning, the state is the current situation in which the agent

finds itself able to make a decision. If the decision to be made is what method

should be used to reduce a certain task, then this state must consist of both the

current planning state (s0 in Algorithm 2) and the current task network (w0 in Al-

gorithm 2). The actions in reinforcement learning are the decisions that the agent

may make. In this case, they refer not to actions in the planning sense, but to the

HTN methods that are applicable to the current planning state and task network.

Decomposing tasks is an episodic activity; once a task has been fully decomposed

no more task reductions are necessary. It is also a recursive activity in that the

decomposition of a top-level task typically requires the decomposition of one or

more subtasks as well. In cases where a task network contains more than one

nonprimitive task this is treated as multiple distinct episodes, even though decisions

made when decomposing the first task will affect the state from which the second

task must be decomposed. After each task reduction, the agent receives a reward

from the environment. The return for reducing a nonprimitive task t with a method

m = (mh,mφ,mw) is the sum of immediate reward r and the returns from the

reductions of each of the nonprimitive tasks in mw, as in Equation 5.1. The return

for applying an action to a primitive task is 0 in this formalism, although it would

be equivalent to move the rewards associated with a reduction to there. Because

97



CHAPTER 5. ESTIMATING HTN METHOD VALUES

task decompositions are reasonably short episodes, this formalism does not discount

future rewards as some reinforcement learning systems do.

R(t) = r +
∑
ti∈mw

R(ti) (5.1)

A precise model of exactly what planning states and task networks will be reached

as a result of each possible method application and the possible rewards that could

be received is not immediately available, and generating one would be quite difficult.

However, generating experience is quite easy; we simply provide the HTN planner

with a problem and allow it to search for a solution. Thus, this formalism uses a

Monte Carlo technique for solving the reinforcement learning problem.

At all times (continuing from one episode to the next) the agent maintains an

estimated value of using a particular method to reduce a task. This method-value

function has the signature Q : M → R, and the value of Q(m) is called the Q-

value of m. Each method is applicable only to tasks sharing one particular task

template, and because these methods do not contain any constant terms, they will

be equally useful for any task following that template. Thus, it is only necessary to

maintain a single value for each method, which will be used for all tasks matching

the head of that method. Note also that the planning state is not included as part of

this value calculation. Instead, there is an assumption that a method will be equally

effective in all situations in which it is applicable. This assumption is most certainly

false, but it drastically constricts the space of values that must be estimated and

makes the problem tractable.

The Q-value of a method represents the total return that the agent expects to

receive by using the method to reduce a task, assuming that it makes future decisions

within the episode sensibly. Thus, if the Q-values are accurate estimates of the true

values of the methods, the agent will maximize its return by always selecting the

highest-valued method among applicable candidates. If the rewards given to the

agent are carefully matched to a particular notion of plan quality, then the agent

will also maximize the quality of plans that it produces by always choosing the

method with highest Q-value.
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To ease the process of using and updating Q-values, with each method is stored

the Q-value itself, Q(m), and a count of the number of times that method has been

observed or used, k(m).

5.2 Q-Maker: Learning Methods & Initial Method

Values

Rather than beginning the reinforcement learning process with the Q-values of meth-

ods assigned to equal values or arbitrarily, it is possible to compute an initial estimate

of the value of a method as that method is being learned. The Q-Maker procedure

is an extension of HTN-Maker that computes this initial estimate with each new

method that it learns. In order to do so, Q-Maker must have a way of knowing

or guessing what rewards the planner would have received if it generated the plan

in the learning example that it is analyzing. Because rewards in this formalism will

be closely tied to the quality of the plan being generated, this is not a problem.

Algorithm 8 shows the basic Q-Maker algorithm, which is very similar to Al-

gorithm 6 for HTN-Maker. The first difference is on Line 13, where the Learn-

Method subroutine returns both a method (as in HTN-Maker) and the total re-

turn R that it believes would have been generated following the use of that method

and other decisions that produce the plan from the learning example. If the newly-

learned method is a copy of one already known to the system, the return is averaged

into the existing estimate of its value (Line 15) and the count of times the method has

been observed is incremented (Line 16). Otherwise, the method is added (Line 18),

its initial estimate is set to the expected return from this trace (Line 19), and its

count is set to 1 (Line 20).

5.3 Q-Reinforce: Refining Method Values

Although the initial value estimates produced by HTN-Maker are useful, they

may not be sufficient to produce high-quality plans in some circumstances. Because
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these values are based entirely on the plans that were part of the learning examples,

they represent the utility of the methods only when used to produce those particular

plans. In practice, it will often be possible to use those methods in circumstances

that did not appear in the learning examples and that result in very different returns.

The Q-Reinforce algorithm, which uses reinforcement learning to improve the

initial value estimates based on problem-solving experience, is designed to combat

this bias. Algorithm 9 shows pseudocode of Q-Reinforce.

Q-Reinforce uses recursion in a different manner to ease the propagation of

returns, but will produce similar results to Algorithm 2 (other than that it returns

more than just a plan). Rather than recursing on the entire new problem after

each reduction of a nonprimitive task or selection of an action, it recurses only on

the sub-problem created when reducing a nonprimitive task, which makes it easier

to treat each decomposition as a distinct, though sometimes recursively related,

reinforcement learning episode. The input to Q-Reinforce is an HTN planning

domain, an initial state, an initial task network, and a method-value and method-

count function. The output is a plan that accomplishes the tasks, a total return

received from generating that plan, and updated method-value and method-count

functions. For top-level calls only the method-value and method-count functions are

needed, but the plan and return are used to combine the results of recursive calls to

solve subproblems.

Q-Reinforce begins by initializing an empty plan (Line 3), a current state

(Line 4), and a return of zero (Line 5). It then processes each task in the initial task

network in the order in which they appear (Line 6). If the current task is primitive

and an action can be generated that matches it and is applicable in the current

state, such an action is generated (Line 7). Applying an action does not involve a

choice by the reinforcement learning agent. Thus, no reward is earned and no values

are updated. However, the action is applied to the current state and appended to

the plan generated thusfar (Lines 9 - 10).

If the current task is instead nonprimitive, Q-Reinforce selects from among the

applicable method instantiations using a uniform distribution (Line 15). This makes

Q-Reinforce an off-policy learner [73], since the policy that it is attempting to
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improve makes a greedy selection based on the method values but Q-Reinforce

does not follow this policy itself. This is necessary to override any bias that the

initial method values may have based on the plans from which they were learned.

Q-Reinforce makes a recursive call to process the subtasks of the selected method

(Line 16). The plan that was generated to solve that subproblem is appended to

the plan to solve the larger problem, and is applied to advance the current state

(Lines 17 - 18). Both the return received while solving the subproblem (R′) and the

reward received as a direct result of the use of the selected method (r) are added to

the total return received while solving the larger problem (Line 19), and both are

averaged into the estimated value of the method used (Lines 20 - 21).

5.4 Q-Shop: Planning With Method Values

The Q-Reinforce algorithm is entirely exploratory, but there is an additional

program, Q-Shop, which exploits the knowledge that was extracted by Q-Maker

and refined by Q-Reinforce. Q-Shop is a straightforward implementation of

Algorithm 2 in which the choice made on Line 12 is of the applicable method with

highest value. This remains a backtracking point in the case that the planner is

unable to continue after making such a decision. Alternatively, Q-Reinforce could

be made into an exploitative planner by changing its selection in Line 15 from using

a uniform probability distribution to selecting greedily based on the existing method

values.
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Algorithm 8: A high-level description of the Q-Maker procedure. The input
includes a classical planning domain description Σ[c], a finite set of learning
examples E, a finite set of annotated tasks T , a (possibly empty) finite set of
HTN methods M , and a method value function Q and method count function
k. The output is an updated set M of HTN methods and functions Q and k.

Procedure Q-Maker(Σ[c], E, T ,M,Q, k)1

begin2

foreach learning example e = (s0, π) ∈ E do3

initialize X ← ∅4

initialize ~S ← 〈s0〉5

for i← 1 to k do6

si ← γ(si−1, ai−1)7

~S ← ~S · 〈si〉8

for f ← 1 to k do9

for i← f − 1 down to 0 do10

foreach annotated task τ = (τh, τφ, τ+) ∈ T do11

if τφ ⊆ si and τ+ ⊆ sf then12

(m,R)← Learn-Method(π, ~Sπ, τ,X, i, f)13

if m ∈M then14

Q(m) = Q(m)∗k(m)+R
k(m)+115

k(m) = k(m) + 116

else17

M ←M ∪ {m}18

Q(m) = R19

k(m) = 120

X ← X ∪ {(mh, τ+,mw,mφ, i, f)}21

return (M,Q, k)22

end23
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Algorithm 9: An agent that learns from task reduction experience

Procedure Q-Reinforce(Σ[h], s0, w0, Q, k)1

begin2

π ← 〈〉3

s← s04

R← 05

for ti ∈ w0 do6

if ti is primitive then7

if ∃ an o ∈ O and u such that u(oφ) ⊆ s and u(oh) = ti then8

s← (s \ u(o−)) ∪ u(o+)9

π ← π · 〈u(o)〉10

else11

return FAIL12

else13

if ∃ an m ∈M and u such that u(mφ) ⊆ s and u(mh) = ti then14

Nondeterministically select such an m and u15

(π′, R′, Q, k)← Q-Reinforce(Σ[h], s, u(mw), Q, k)16

π ← π · π′17

s← γ(s, π′)18

R← R +R′ + r19

Q(m)← Q(m)∗k(m)+R′+r
k(m)+120

k(m)← k(m) + 121

else22

return FAIL23

return (π,R,Q, k)24

end25
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Chapter 6

Experimental Evaluation

I have performed a variety of experiments to evaluate the effectiveness of HTN-

Maker, HTN-MakerND, and the combination of Q-Maker, Q-Reinforce, and

Q-Shop. The first section of this chapter describes in detail the planning domains

used in the experiments. The next describes an experiment to measure the rate

at which HTN-Maker learns from examples and reports on the results. After

that I discuss the speed at which a reimplementation of Shop is able to solve

problems using the knowledge learned by HTN-Maker, comparing it to modern

classical planners and to itself using specially hand-crafted methods. The fourth

section considers the speed at which ND-Shop2 is able to solve nondeterministic

planning problems using methods learned by HTN-MakerND, comparing against

a benchmark planner for nondeterministic planning domains. Finally, I consider

both the quality of plans produced by Q-Shop using methods with values learned

by Q-Maker and Q-Reinforce and the time required to produce those plans

compared to several different planners.

6.1 Domains

Very many domains have been described and codified over the years to evaluate

planning systems. Not all of them, however, are suitable for use in evaluating this

work. Most notably, many domains introduced during the last decade have had
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multiple variants: one or more that utilize more complex representations such as

numeric quantities, durative actions, universal and existential quantifiers, or con-

ditional effects, and one that conforms to the traditional formalism used in this

document for classical planning. HTN-Maker is not capable of reasoning about

the various extensions to planning languages that are an important part of the

complex variants of these domains, so they are not usable. (HTN-MakerND is

capable of reasoning about one particular non-classical extension: nondeterministic

actions.) HTN-Maker can work with the traditional (Strips) variants, but unfor-

tunately when all of the extra features are removed many of these domains reduce

to something that is directly equivalent to another existing domain or is otherwise

uninteresting.

Other domains are usable by HTN-Maker, but would not be useful for eval-

uating it. In order to compare the speed of planning with methods learned by

HTN-Maker to non-hierarchical planning, large, complicated planning problems

are needed. Typically, the primary way to increase the complexity of a planning

problem is to increase the number of goals that must be accomplished. In order to

strictly use the notion of equivalence between a classical planning problem and an

HTN planning problem as in Definition 40, the equivalent to a planning problem

with 100 goals will have an initial task network consisting of one task, and that

task will be annotated with 100 goals. This is feasible, but because methods are for

accomplishing a specific task, HTN-Maker will not be able to learn to accomplish

a 100-goal task without observing plans in which all 100 goals are accomplished.

Furthermore, a method that can be used to solve a 100-goal task will be useless for

solving 99-goal and 101-goal tasks.

Thus, these experiments do not use an equivalent annotated task to each set of

goals that appears in a planning problem. Instead, the many goals of a complex

classical planning problem are partitioned similarly to the classically-partitionable

planning problems described in Section 3.5.3, but in such a way that once a goal

becomes true it will always remain true. The resulting HTN planning problems

have not a single task in their initial task networks but instead a sequence of tasks,

one for each goal. In those domains reported on here it is fairly easy to create a
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serializable partition of goals into discrete tasks; in many others it does not appear

to be possible. This does not mean that HTN-Maker is unusable in these other

domains, but methods that it learns from small examples would not be usable to

solve large problems in those domains.

6.1.1 Blocks-World

The first domain of interest is Blocks-World, which has also been used as an

example throughout this text. This domain has been used for evaluating AI systems

for a very long time, and was utilized in the second international planning competi-

tion (IPC-2) in 2000. As described earlier, the Blocks-World domain contains a

number of cubical blocks, a robotic arm, and a flat tabletop with presumably infinite

space. At all times, each block is either being held by the arm, sitting on the table,

or sitting within a pile of blocks, the bottom of which is on the table. Although

other formulations exist, in this work I use one in which there are four deterministic

operators, shown in Figure 2.5.

The goal of planning problems in the Blocks-World domain is to move the

blocks into a new configuration. The problem generator used produces problems

in which the initial and final configurations of all blocks are fully specified, so the

difficulty of a problem is directly measured as the number of blocks. Thus, for the

deterministic version of the domain two annotated tasks are needed, which together

can describe any position in which we might want to store a block. These two

annotated tasks are shown in Figure 6.1. The process of serializing these tasks in

such a way that once a task has been accomplished it will never be un-accomplished

is to first put the towers of blocks that will be built into an arbitrary order, then

for each tower to issue the task for the bottom block of that tower, then the block

above it, and so forth to the top before moving on to the next tower. This works

because the methods learned by HTN-Maker never take actions that do not help

to achieve the current task, and there are only two situations in which it can be

beneficial to move a block: when that block is mentioned in the current task, or

when that block is on top of a block that is mentioned in the current task. Thus,
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the goal statement { (on A B), (on-table B), (on C A) } has the equivalent an-

notated task (Make-3Pile C A B), but also the equivalent serialization of tasks 〈
(PutOnTable B), (PutOnBlock A B), (PutOnBlock C A) 〉.

( :annotated-task

:head

(PutOnTable ?a)

:precondition

{}

:positive-effects

{ (on-table ?a) }

)

( :annotated-task

:head

(PutOnBlock ?a ?b)

:precondition

{}

:positive-effects

{ (on ?a ?b) }

)

Figure 6.1: Annotated tasks in the deterministic Blocks-World domain

Because a nondeterministic version of the Blocks-World domain is frequently

used for comparing planners that work with nondeterministic planning domains, I

also used a nondeterministic version of the Blocks-World domain when test-

ing HTN-MakerND. In this version of the domain, each operator has the pos-

sibility of having its usual effects or of having no effect at all. In addition, the

(!Stack ?a ?b ?c) and (!Unstack ?d ?e ?f) have the possibility of dropping

block ?a (or ?d) on the table. Because solving (strong-cyclically) nondeterministic

planning problems is much more computationally difficult than solving determin-

istic planning problems, I was able to get meaningful results from much smaller

problem sizes in the nondeterministic version. Thus, I decided to use a compro-

mise between the equivalent HTN problems and the serialized goal partitions de-

scribed above: instead of one task per block or one task per problem, there was one

task per tower of blocks. This meant that I could use the (Make-2Pile ?a ?b),

(Make-3Pile ?a ?b ?c), . . . , (Make-8Pile ?a ?b ?c ?d ?e ?f ?g ?h) style of

annotated tasks that were used in earlier examples.
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6.1.2 Logistics

The second domain used in these experiments was also introduced earlier, in Sec-

tion 3.4.4. The Logistics domain models a delivery company trying to get all of its

packages to their destinations, using trucks for intracity transport and airplanes for

intercity transport. It was first introduced by Voloso [88], and was also used in the

first international planning competition (IPC-1) in 1998. Unlike Blocks-World,

this domain contains constants of varying types and predicates that can only be

true of certain types of terms. The operators for the Logistics domain are shown

in Figure 6.2. They are used to load/unload packages to/from a truck or airplane

and the location of that vehicle, to drive a truck between two locations in the same

city, and to fly an airplane between two airports.

The goal of planning problems in the Logistics domain is to deliver the various

packages to new locations; thus the number of packages is the natural metric for the

difficulty of a problem. For this domain I used a single annotated task, which was

shown in Figure 3.4b. Moving a package will never be useful unless the planner is

working on a task related to that package, so any serialization of the tasks, one per

package, will result in a state where all of the goals hold.

6.1.3 Zeno

The third domain is Zeno, which is somewhat similar to Logistics. Rather than

packages, in this domain passengers are transported between cities. There are no

locations within cities, and thus no trucks. However, each flight by an aircraft

consumes either one unit of fuel (when “flying”) or two (when “zooming”). Aircraft

can be refueled one unit at a time, but have a fairly small limit to the amount of

fuel they can hold. The classical version of the domain uses standard predicate

logic to encode the relationships between the integers zero through five to represent

fuel levels. The Zeno domain was introduced in the third international planning

competition (IPC-3) in 2002. Modelling limited numerical quantities makes the

operators somewhat complex; instead of formal definitions there are descriptions in

Figure 6.3.
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( :operator

:head

(!UnloadTruck ?p - package

?t - truck ?l - location)

:precondition

{ (in-truck ?p ?t),

(truck-at ?t ?l) }

:negative-effects

{ (in-truck ?p ?t) }

:positive-effects

{ (pkg-at ?p ?l) }

)

( :operator

:head

(!UnloadPlane ?p - package

?a - plane ?l - location)

:precondition

{ (in-plane ?p ?a),

(plane-at ?a ?l) }

:negative-effects

{ (in-plane ?p ?a) }

:positive-effects

{ (pkg-at ?p ?l) }

)

( :operator

:head

(!Drive ?t - truck ?l - location

?m - location ?c - city)

:precondition

{ (truck-at ?t ?l),

(in-city ?l ?c),

(in-city ?m ?c) }

:negative-effects

{ (truck-at ?t ?l) }

:positive-effects

{ (truck-at ?t ?m) }

)

( :operator

:head

(!LoadTruck ?p - package

?t - truck ?l - location)

:precondition

{ (pkg-at ?p ?l),

(truck-at ?t ?l) }

:negative-effects

{ (pkg-at ?p ?l) }

:positive-effects

{ (in-truck ?p ?t) }

)

( :operator

:head

(!LoadPlane ?p - package

?a - plane ?l - location)

:precondition

{ (pkg-at ?p ?l),

(plane-at ?a ?l) }

:negative-effects

{ (pkg-at ?p ?l) }

:positive-effects

{ (in-plane ?p ?a) }

)

( :operator

:head

(!Fly ?a - plan

?l - location ?m - location)

:precondition

{ (plane-at ?a ?l),

(is-airport ?l,

(is-airport ?m) }

:negative-effects

{ (plane-at ?a ?l) }

:positive-effects

{ (plane-at ?a ?m) }

)

Figure 6.2: Operators for the Logistics domain
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Operator Description
(!Board ?p ?a ?c) Person ?p boards aircraft ?a, both of which

must be located in city ?c.
(!Debark ?p ?a ?c) Person ?p exits aircraft ?a, which must be in

city ?c, and is now in city ?c.
(!Fly ?a ?c ?d ?f ?g) Aircraft ?a flies from city ?c to city ?d, de-

creasing its fuel level from ?f to ?g. (Level
?f must be exactly one greater than ?g, and
may not be zero.)

(!Zoom ?a ?c ?d ?f ?g) Aircraft ?a flies from city ?c to city ?d, de-
creasing its fuel level from ?f to ?g. (Level
?f must be exactly two greater than ?g, and
may not be zero or one.)

(!Refuel ?a ?f ?g) Aircraft ?a has its fuel level increased from
?f to ?g. (Level ?f must be exactly one less
than ?g, and may not be the maximum fuel
level.)

Figure 6.3: Operators for the Zeno domain

The only goal in the Zeno domain is to deliver a passenger to a specific city, so

the problem size is the number of passengers to be transported. These experiments

use a single annotated task, shown in Figure 6.4. Like in the Logistics domain,

HTN-Maker will not learn methods that would move a passenger unless that

passenger were the subject of the current task, so any serialization of these tasks

will be safe.

6.1.4 Satellite

The fourth domain is Satellite, which models the problem of an array of satellites,

each with one or more instruments on them, each of which supports one or more

modes. The objective is to collect a variety of images, each of a specific mode and

direction. It was first introduced in the third international planning competition

(IPC-3) in 2002. The operators in this domain are too complex to show formally on

a single page; descriptions of each can be found in Figure 6.5.
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( :annotated-task

:head

(!Travel ?p - person

?c - city)

:precondition

{}

:positive-effects

{ (person-at ?p ?c) }

)

Figure 6.4: An annotated task for the Zeno domain

Operator Description
(!TurnTo ?s ?o ?n) Turn satellite ?s from facing direction ?o to

facing direction ?n

(!SwitchOn ?i ?s) Provide power to instrument ?i on satellite
?s. (No other instrument on that satellite
may simultaneously have power.)

(!SwitchOff ?i ?s) Remove power from instrument ?i on satel-
lite ?s.

(!Calibrate ?i ?s ?d) Calibrate instrument ?i on satellite ?s,
which must be pointed at ?d. An instrument
must be calibrated each time that it is pow-
ered on before it may be used, and each in-
strument has a predetermined direction that
it must be facing for calibration.

(!TakeImage ?s ?d ?i ?m) Use instrument ?i on satellite ?s to take an
image of direction ?d using mode ?m. The
instrument ?i must support the mode ?m and
be powered and calibrated. The satellite ?s

must be facing direction ?d.

Figure 6.5: Operators for the Satellite domain
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There is only one type of goal in this domain, only one annotated task is needed.

It is shown in Figure 6.6. The metric for the difficulty of problems in this domain is

the number of images to take. It is never possible in this domain for an image that

had been collected to be lost, so any serialization of goals into a sequence of these

tasks will be equivalent to the classical planning problem with all of the goals.

( :annotated-task

:head

(!GetImage ?m - mode

?d - direction)

:precondition

{}

:positive-effects

{ (have-image ?d ?m) }

)

Figure 6.6: An annotated task for the Satellite domain

6.1.5 Rovers

The most complex deterministic domain used in these experiments is Rovers, which

combines ideas from Logistics and Satellite. In this domain, robots on the sur-

face of Mars must traverse the terrain, taking rock and soil samples and astronomical

images, and relay their findings to a central lander. What makes this domain much

more complex than Logistics is that the graph of locations is not fully connected.

Instead, the planner needs to perform path-finding to discover a route from the

waypoint a rover is currently in to the one it needs to be in to take a sample or

send a result. The Rovers domain was also introduced at the third international

planning competition (IPC-3) in 2002. Figure 6.7 contains a high-level description

of the operators for this domain.

There are three similar types of goals in the Rovers domain: having successfully

communicated each of the three types of data to the lander. Thus, there is an

annotated task for each type of data, as shown in Figure 6.8. As in the Satellite
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Operator Description
(!Navigate ?r ?y ?z) Move rover ?r from waypoint ?y to waypoint ?z.

The latter waypoint must be both visible and
traversable from the former.

(!SampleSoil ?r ?s

?p)

Rover ?r, which must be at waypoint ?p, collects
a sample of the soil at waypoint ?p and places it
in store ?s, which must be empty and be a com-
ponent of rover ?r.

(!SampleRock ?r ?s

?p)

Rover ?r, which must be at waypoint ?p, collects
a sample of the rocks at waypoint ?p and places it
in store ?s, which must be empty and be a com-
ponent of rover ?r.

(!Drop ?r ?s) Rover ?r disposes of the contents of store ?s, which
must be a component of it.

(!Calibrate ?r ?i ?t

?w)

Instrument ?i on rover ?r calibrates itself by
pointing at objective ?t while at waypoint ?w. Ob-
jective ?t must be visible from waypoint ?w, and
must be the predetermined calibration target for
instrument ?i.

(!TakeImage ?r ?p ?o

?i ?m)

Instrument ?i on rover ?r takes an image of ob-
jective ?o using mode ?m, while the rover is at
waypoint ?p. The instrument must support the
mode and be calibrated, and the objective must
be visible from the waypoint.

(!SendSoilData ?r ?l

?p ?x ?y)

Rover ?r, which is at waypoint ?x, sends data that
it had previously collected about the soil at way-
point ?p to lander ?l, which is at waypoint ?y.
Waypoint ?y must be visible from waypoint ?x.

(!SendRockData ?r ?l

?p ?x ?y)

As (!SendSoilData ?r ?l ?p ?x ?y), but for
data about rocks.

(!SendImageData ?r

?l ?o ?m ?x ?y)

As (!SendSoilData ?r ?l ?p ?x ?y), but for
an image of objective ?o that it had previously
taken using mode ?m.

Figure 6.7: Operators for the Rovers domain
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domain, once one of these goals has been accomplished there is no action that can

undo it, so any serialization of the tasks will be acceptable. Because of the nature

of the problem generator used, the measure of the size of a problem in the domain

is not the number of goals directly. Rather, it is the number of waypoints, each of

which has a 1
3

probability of having interesting soil and a 1
3

probability of having

interesting rocks.

( :annotated-task

:head

(GetSoilData

?x - waypoint)

:precondition

{}

:positive-effects

{ (comm_soil_data ?x) }

)

( :annotated-task

:head

(GetRockData

?x - waypoint)

:precondition

{}

:positive-effects

{ (comm_rock_data ?x) }

)

( :annotated-task

:head

(GetImageData

?o - objective ?m - mode)

:precondition

{}

:positive-effects

{ (comm_image_data ?o ?m) }

)

Figure 6.8: Annotated tasks in the Rovers domain

6.1.6 RobotNavigation

Finally, I used the inherently nondeterministic RobotNavigation domain [34]

when evaluating HTN-MakerND, because it is a common benchmark for systems

that plan in nondeterministic domains. The RobotNavigation domain consists

of a building with eight rooms arranged linearly, with seven doors connecting them.

Several rooms contain packages that a robot needs to deliver to different locations.
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The robot can open doors, more through open doorways, and pick up and put down

packages, though it can hold at most one package at a time. Complicating the

robot’s objective is an independent agent that runs through the building, opening

and closing doors at random. Rather than the actions of a separate agent, these

openings and closings are modeled as a set of nondeterministic effects for each action

that the robot takes. The basic functions of the operators are shown in Figure 6.9,

but in addition each operator has optional effects of opening a closed door and vice

versa. In order to reduce the size of the search space, the robot may also choose

to temporarily focus on a door (meaning that it cares whether that door is open or

not), or to unfocus from it. The only type of goal in this domain is for an object to

be in a specific room, so there is a single annotated task that accomplishes this. As

in domains discussed earlier, HTN-Maker would never learn a method to move

an object that is not mentioned in the current task, so any serialization of goals is

possible. As usual, the number of objects to be delivered will be the measure of

problem size.

Operator Description
(!Pickup ?o ?l) The robot, which must be in room ?l and not

holding anything, picks up object ?o, which
also must be in room ?l.

(!Putdown ?o ?l) The robot, which must be in room ?l and
holding object ?o, puts object ?o down in
room ?l.

(!Move ?r ?s ?d) The robot, which must be in room ?r, moves
to room ?s. Door ?d must connect rooms ?r
and ?s, and must be open.

(!Open ?r ?s ?d) The door ?d, which must connect rooms ?r

and ?s and be closed, is opened.

Figure 6.9: Operators for the RobotNavigation domain
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6.2 Learning Rate Experiments

The first set of experiments is designed to measure the rate at which HTN-Maker

learns knowledge from examples, and how applicable that knowledge is to novel

problems. Theorem 3 states that it is possible to learn a complete set of methods

from some finite set of learning examples, but my hypothesis is that a relatively

small number of randomly generated examples will be sufficient.

6.2.1 Setup

To test this, I randomly generated 400 problems of low complexity, then began

five distinct trials. The size of these problems was between 5 and 10 blocks to

reconfigure in Blocks-World, between 1 and 8 packages to deliver in Logistics,

between 3 and 8 passengers to transport in Zeno, between 1 and 5 images to collect

in Satellite, and between 3 and 6 waypoints that could contain data to collect

in Rovers. For each trial, 300 problems were randomly selected as a training set,

while the remaining 100 were held out as a test set. Additionally, each trial specified

a random ordering among the problems in the training set. By running multiple

trials I intended to avoid any bias that would occur from a particularly easy problem

being used in the test set, or from a particularly interesting problem appearing early

in the ordered training set.

I then used the FastForward classical planner [28] to generate a solution for

each of the 400 problems in each domain. For each problem in the training set, the

combination of its initial state and the solution to it produced by FastForward

formed a learning example. I then ran HTN-Maker on the classical planning do-

main description, the appropriate annotated tasks, the learning example associated

with the first problem in the training set, and an empty set of methods (M0). The

output of HTN-Maker was stored as M1. Then I ran HTN-Maker on the clas-

sical planning domain description, the appropriate annotated tasks, the learning

example associated with the second problem in the training set, and M1, storing the

results as M2. This continued until each of M1 through M300 had been produced.
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Each set of methods Mi represents the knowledge learned by HTN-Maker from

the first i problems in the training set.

Then I attempted to solve all problems in the test set using M0, then did so again

with M1, and so forth up to M300. The HTN planner used was HTN-Solver, which

is a reimplementation of Shop (which is itself an implementation of Algorithm 2).

The HTN-Solver planner is more efficient than Shop for these experiments be-

cause it was written in C and optimized with techniques such as a symbol table. It

does not support many of the advanced features of Shop such as axioms, numeric

computation, lists, or external functions, but none of these are used in the methods

learned by HTN-Maker. If HTN-Solver was able to solve the testing problem

within 30 minutes using the appropriate Mi, this was reported as a problem that is

covered by the method set Mi; otherwise it was reported as unsolvable with those

methods.

Because of the several optional features of HTN-Maker described in Sec-

tion 3.4, there was not a single system to test. Rather, I chose four different config-

urations of HTN-Maker as being interesting, and repeated this set of experiments

for all four configurations. The problems themselves, the partition of problems into

training and testing sets, and the ordering of problems within the training set are

all the same across different the different configurations of HTN-Maker, so that it

is possible to directly compare the results of a specific trial. The four configurations

of HTN-Maker that were tested can be characterized along two axes: whether or

not subsumption checking was enabled (see Section 3.4.4) and which form of gen-

eralization was used (see Section 3.4.5). I did not explicitly require methods to be

right-recursive (Definition 48), though the restrictions of Section 3.4.1 caused this

to be the case more often than not. For lack of a better organizing principle, I have

labeled the four configurations of HTN-Maker with the letters A through D, as

shown in Table 6.1.
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Configuration Subsumption Generalization
A On Weak
B On Strong
C Off Weak
D Off Strong

Table 6.1: Configurations of HTN-Maker

6.2.2 Results

This subsection presents the results of these experiments, while the following ex-

plains and discusses them. Figure 6.10 shows the results of this experiment in the

Blocks-World domain. Although the interesting parts of the data are packed

densely into the top-left of the graph, there are several things to notice here. First,

regardless of configuration HTN-Maker is able to learn enough information from

a single example to solve, on average, more than 40% of the training problems,

and only five training examples are needed for 80% coverage. Second, there is no

configuration in which all five trials reach 100% coverage, but all come very close.

Third, the results in configurations A and C are nearly identical, as are the results

in configurations B and D. The choice of generalization strategy has a small but

noticeable impact. Interestingly, the configurations that use strong generalization

seem to learn most quickly initially (examples 1-12), then are surpassed by those

that use weak generalization through a moderate number of examples (12-70), and

then regain a very small advantage through a large number of examples (70-300).

The results for the Logistics domain are show in Figure 6.11, and are simi-

lar to those from the Blocks-World domain, with two notable differences. In

this domain, configurations B and D (those using strong generalization) learn more

slowly than configurations A and C throughout, although with sufficient examples

they still achieve near-complete coverage of the testing problems. Configurations A

and C actually do achieve complete coverage in each of the five trials, and do so

after observing at most 62 training examples.

The graph in Figure 6.12 summarizes the results for the Zeno domain. It is
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Figure 6.10: Learning rate in Blocks-World domain
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Figure 6.11: Learning rate in Logistics domain
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difficult to see much of interest in this graph because HTN-Maker learns so rapidly;

in all configurations four learning examples are sufficient to reach 90% coverage of

the test set. Configurations A and C reach complete coverage in all five trials after

10 learning examples, while configurations B and D require 18 examples in the worst

trial before they produce a set of methods that can solve every test problem.
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Figure 6.12: Learning rate in Zeno domain

Data from the Satellite domain is shown in Figure 6.13. The results in this

domain are similar to Logistics and Zeno, but with one glaring exception. In the

Satellite domain configuration A does not perform equivalently to configuration

C; instead, it is significantly worse starting after learning example 10. More surpris-

ing still, configuration A sees a drop in its performance after learning from training

example 182.

Figure 6.14 shows the learning rate data for the Rovers domain. HTN-Maker

learns more slowly in this domain than any other test, although it still appears to be

slowly converging toward a complete domain. Configurations A and C learn more

quickly than B and D.

121



CHAPTER 6. EXPERIMENTAL EVALUATION

0

20

40

60

80

100

0 50 100 150 200 250 300

T
es

t
P

ro
b
le

m
s

S
ol

ve
d

Training Examples Seen

Conf A
Conf B
Conf C
Conf D

Figure 6.13: Learning rate in Satellite domain
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Figure 6.14: Learning rate in Rovers domain
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I also recorded two other pieces of information for each domain and configura-

tion of HTN-Maker: the total number of methods learned from all 300 training

examples, and the average time required to learn from a training example. Table 6.2

shows the former, while Table 6.3 has the latter data, both averaged across all five

trials.

These experiments used verification tasks and methods, as described in Sec-

tion 3.4.3, to ensure that plans produced by HTN-Solver as a solution to the

HTN equivalent of each testing problem would be solutions to that testing problem,

as well as running each plan through a utility program that confirmed that it was

a solution. As expected, every plan produced by HTN-Solver was sound with

regard to the semantics of the annotated tasks. The system maintained a log of

each time that HTN-Solver needed to backtrack during its search process and

the reason why. Although a need to backtrack was not uncommon, this was always

because the planner solved one of its top-level tasks in a way that resulted in a state

from which it did not know how to solve the following top-level task. There was not

a single case in which an unsound plan would have been generated if verification

tasks had not been used.

Domain Conf A Conf B Conf C Conf D
Blocks-World 146.0 176.7 1000.6 1056.4

Logistics 42.2 105.6 230.0 829.4
Zeno 11.0 16.2 4211.6 4371.0

Satellite 19.6 24.8 65.8 71.4
Rovers 152.2 419.8 763.6 1957.4

Table 6.2: Average number of methods learned

6.2.3 Analysis

A few broad conclusions may be drawn from this experiment. First and foremost,

the methods learned by HTN-Maker, in any configuration and for every domain

that was tested, can be used to solve many problems beyond those that formed the
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Domain Conf A Conf B Conf C Conf D
Blocks-World 6.8 15.2 6.4 10.9

Logistics 3.2 13.3 3.3 13.4
Zeno 0.06 0.07 1.61 1.57

Satellite 1.66 0.262 0.262 0.225
Rovers 23.7 116.0 21.7 116.0

Table 6.3: Average number of seconds to learn from one example

examples on which HTN-Maker was trained. In simple domains such as Blocks-

World, Logistics, Zeno, and Satellite it is easy to reach complete or near

complete coverage of the domain after learning from very few examples. This is less

true in a much more difficult domain, such as Rovers.

Most planning problems in each testbed domain can be solved using one of a

few common strategies, which is why coverage frequently reaches 80% or higher

after learning from a handful of problems. There are, however, a number of special

“corner” cases in each domain that will not be solvable until they have been observed

and analyzed by HTN-Maker. In the Logistics domain, for example, every

package that needs to be delivered falls into one of the cases shown in Table 6.4.

Because several of these cases can resolve into one of several other cases depending

on the exact situation, there are in total 21 different complete situations. Cases 1,

2, and 3 each account for one situation each, cases 4 and 5 for three each, and cases

6 and 7 for six each. It is possible for HTN-Maker to learn to solve several of

these situations by observing only one, but not always. The Rovers domain has

many more such corner cases to learn.

In most cases the use of subsumption checking has no effect on the learning rate.

This is not surprising, since the only effect of subsumption checking is to remove

methods that are provably unnecessary. I did expect to see that the winnowing of

methods provided by subsumption checking would speed up planning times, and

that perhaps this would be sufficient to make some problems cross the threshold of

being solvable in less than 30 minutes, but this does not appear to have occurred in

any significant way. (Section 6.3 explores in detail the question of how fast planning
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1. The package is already in its destination: nothing needs to be done.

2. The package is in a location in the same city as its destination, with a truck:
load into the truck, drive it to the destination, unload it.

3. The package is in a location in the same city as its destination, without a
truck: drive a truck to the location with the package, follow #2.

4. The package is in an airport in the wrong city, with an airplane: load into the
airplane, fly it to an airport in the proper city, unload it, follow #1, #2, or
#3.

5. The package is in an airport in the wrong city, without an airplane: fly an
airplane to the airport with the package, follow #4.

6. The package is in a non-airport in the wrong city, with a truck: load into the
truck, drive it to an airport, unload it, follow #4 or #5.

7. The package is in a non-airport in the wrong city, without a truck: drive a
truck to the location with the package, follow #6.

Table 6.4: Cases for delivering a package in the Logistics domain
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is with methods learned from various configurations of HTN-Maker.)

In all domains the use of subsumption checking significantly decreases the num-

ber of methods retained, in the most extreme case (the Zeno domain, with weak

generalization) by a factor of 383 and in the least extreme case by a factor of three.

This is exactly what I had hoped for and expected when devising the subsumption

checking routine, since a smaller set of methods that can solve the same problems

as a larger set of methods should be both easier for a human reader to understand

and faster for a planner to use. The effect is less pronounced when strong gener-

alization is used than with weak generalization, except in the Logistics domain.

This also matches expectations, since strong generalization produces methods that

are applicable in fewer circumstances, and thus less capable of subsuming other

methods.

In some cases the use of subsumption checking increased the average amount

of time required to learn from an example, while in others it had the opposite

effect. In most domains the difference is small enough to be within the margin of

error, but in the Satellite domain when using weak generalization subsumption

checking increases the time to learn by a factor of 6 and in the Zeno domain it

decreases the time to learn by a factor of 27 (weak generalization) or 22 (strong

generalization). There are several ways in which subsumption checking could affect

learning times, and apparently different factors are more important in different

circumstances. Given two methods, checking whether or not the first subsumes the

second or vice versa is often a more expensive operation than checking whether or

not the two are equivalent. Thus, I would expect subsumption to increase learning

time. However, the use of subsumption decreases the number of methods learned,

which means that the number of subsumption checks that need to be performed

when it is in use will be less than the number of equality checks that need to be

performed when it is not. Indeed, the Zeno domain in which subsumption checking

sped up learning by a large factor is the same domain in which subsumption checking

decreased the number of methods by a large factor.

In most cases HTN-Maker learns more quickly with weak generalization than

with strong generalization. This is what I would expect, since weak generalization
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produces methods that are applicable in all situations in which the methods learned

with strong generalization are applicable, and often more. In the Blocks-World

domain, however, the relationship is more complicated. The downside of weak gen-

eralization is the possibility that methods could be overly applicable, and thus be

used by a planner in ways that are legal but not helpful. I believe that this is

occurring in the region of the Blocks-World domain graph where the configu-

rations with strong generalization outperform those with weak generalization, and

that these unhelpful methods are causing the planner to take too long finding a

solution.

Strong generalization produces more methods than weak generalization, but has

much less of an effect overall than the presence or absence of subsumption checking.

This behavior matches my expectations. With weak generalization HTN-Maker

might learn methods from three different examples such that one subsumes the

others, or perhaps all are equivalent. With strong generalization HTN-Maker

would instead learn three methods, all slightly different from each other in the same

way that the examples are slightly different from each other and all necessary to

achieve full coverage of the domain.

In the Blocks-World, Logistics, and Rovers domains learning with weak

generalization is significantly faster than learning with strong generalization. In the

Zeno domain, the choice of generalization strategy has no noticeable impact on

learning time, but in the Satellite domain learning with weak generalization is

slower than learning with strong generalization, by a wide margin when subsumption

checking is used. The behavior in everything but the Satellite domain is easily

explained: weak generalization means fewer methods, and fewer methods means

fewer equivalence / subsumption checks. Configuration A in the Satellite domain

is an anomaly, both in this way and as discussed in the following two paragraphs.

In the Satellite domain, the learning rate of configuration A deviates from

configuration C after the tenth learning example, unlike all other domains. I have

not been able to find an explanation for this unusual behavior.

In configuration A with the Satellite domain there is a clear decrease in the

number of solvable testing problems around learning example 190. This would seem
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to be a violation of Lemma 5, which states that all of these rates of solvable test-

ing problems should monotonically increase with the number of learning examples

processed. I believe that what is happening here is a failure of a certain bias in

HTN-Solver, which does not make truly nondeterministic choices. Instead, at

each choice point it uses the first applicable method in the order in which they ap-

pear its input file. This is usually a very effective heuristic, but it can result in a

situation where the planner infinitely loops, taking a series of earlier methods that

do not move toward a solution and ignoring later methods that would do so. Thus,

the knowledge necessary to solve the problem still exists, but the planner is ignoring

it. This could occur in configuration A if it learns a method that subsumes a method

that appears early in the file and thus replaces it (at that early location). Because

this new method is more general than the old version, it is now applicable at some

point in the process of solving a particular problem when it was not in the past.

However, it is not actually useful in that situation and instead leads the planner

away from the older, effective problem-solving strategy that is encoded below it.

6.3 Planning Speed Experiments

Having determined that it is possible to solve problems using methods learned by

HTN-Maker, I decided to study how quickly this could be accomplished. Although

researchers have begun considering other factors as well, the primary evaluation of

planning systems remains the speed at which they are able to produce solutions to

planning problems. Because larger, more complex problems require more compu-

tation, faster planners are able to solve larger problems in a reasonable amount of

time. One of the principle advantages of HTN planning over classical planning is

that it can be orders of magnitude faster with a well-written set of methods. If the

methods learned by HTN-Maker are to be useful, they will also need to allow

faster planning than classical techniques.
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6.3.1 Setup

This experiment required planning problems of varying sizes, the exact sizes be-

ing dependent on the particular domain. For each domain and size of problem to

be evaluated in that domain, I randomly generated 20 classical planning problems

and their HTN pseudo-equivalents. I then attempted to solve each of these problems

using seven different planning system configurations, shown in Table 6.5. FastFor-

ward [28] was selected “distinguished planner” in the second international planning

competition in 2000 and remains a common benchmark. The most recent planning

competitions have judged systems on metrics other than planning speed, but an

earlier version of SGPlan6 [31] won the first prize in the satisficing, deterministic

planning track of the fifth international planning competition (IPC-5) in 2006. The

hand-written methods in use were freshly written by the author for this purpose;

the learned ones were taken directly from the first trial of the experiments described

in Section 6.2, and are thus the result of analyzing 300 small learning examples.

Planner Domain Formalization Abbreviation
FastForward classical FF

SGPlan6 classical SGPlan
HTN-Solver classical + hand-written methods Hand
HTN-Solver classical + methods learned in configuration A Conf A
HTN-Solver classical + methods learned in configuration B Conf B
HTN-Solver classical + methods learned in configuration C Conf C
HTN-Solver classical + methods learned in configuration D Conf D

Table 6.5: Planning systems tested

Each planning system was given one hour of CPU time on a compute node with

eight 2.8 GHz Intel Xeon MP processors and up to 4GB of main memory available

to it. The amount of time required by each planner to solve each problem was

recorded.
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Planner Logistics Blocks-World Satellite Rovers Zeno
FF 95.6% 94.0% 51.2% 100.0% 94.8%

SGPlan 100.0% 99.0% 100.0% 100.0% 100.0%
Hand 100.0% 100.0% 100.0% 100.0% 100.0%

Conf A 93.6% 99.0% 100.0% 99.8% 99.2%
Conf B 92.8% 97.0% 98.3% 92.6% 100.0%
Conf C 89.2% 99.0% 100.0% 99.8% 100.0%
Conf D 88.1% 94.0% 98.3% 92.4% 100.0%

Table 6.6: Success rates for each planner in each domain

6.3.2 Results

Not every competitor was able to solve every problem. In some cases this was

because the planner was still working after one hour had passed, while in others it

was because it had, within the time limit, proven that it lacked knowledge necessary

to solve the problem. I have not distinguished between these two failure modes.

When comparing different planners, I have included data only about those problems

that were solvable by all competitors, and only included those problem sizes for

which there were at least 10 such problems. The percentage of problems solved by

each planner, for each domain, is shown in Table 6.6. Other than FastForward

in the Satellite domain, all did quite well.

Figure 6.15 shows the times for each planner in the Blocks-World domain.

The only information readily apparent in this figure is that FastForward scales

very poorly compared to the other competitors and that HTN-Solver using the

methods learned in configuration D has significant difficulty at the 15-block problem

size. (This is due to a single problem that takes exorbitantly long; the others follow

the pattern.) To more clearly see how the other competitors perform I have also

provided Figure 6.16, which does not include these curves. From this figure we

see that the time required by SGPlan6 is growing exponentially with problem

size, while the HTN-Solver curves look nearly linear. (These presumably are also

exponential, but with a much lower constant.) HTN-Solver is most efficient when

using the hand-crafted methods and least efficient when using the methods learned
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by HTN-Maker in configuration C. With all sets of methods it is much more

efficient than SGPlan6 for large problems.
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Figure 6.15: Average planning times in Blocks-World domain

Figure 6.17 shows the planning times for all planners in the Logistics domain.

The visible results are almost identical to those that Figure 6.15 showed in the

Blocks-World domain: FastForward is very slow compared to other planners,

and HTN-Solver has a large outlier at one point while planning with methods

learned in configuration D. As before, I have created a second graph, shown in Fig-

ure 6.18, that excludes these problematic planners. This alternate figure reveals

that HTN-Solver also has a few much smaller outliers when planning with the

methods learned in configuration A of HTN-Maker. It also shows that as in the

Blocks-World domain, the rate of growth of the time required to solve problems

with SGPlan6 is much larger than with HTN-Solver, regardless of the methods

that it uses. Again, HTN-Solver is most efficient with the hand-crafted meth-

ods, and in this case all three sets of learned methods are clustered at requiring

approximately twice as long to solve problems as with the hand-crafted methods.

Figure 6.19 shows the planning speeds with all systems in the Zeno domain. As
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Figure 6.16: Planning times in Blocks-World domain, without FF or Conf D
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Figure 6.17: Average planning times in Logistics domain
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Figure 6.18: Planning times in Logistics domain, without FF or Conf D

in the previous two domains, the times for FastForward dwarf the other planners.

Thus, I have created Figure 6.20 that shows all of the planners other than Fast-

Forward. This figure is rather different from those for the Blocks-World and

Logistics domains. HTN-Solver using the hand-crafted methods is still best,

but SGPlan6 is competitive with HTN-Solver using methods learned in config-

urations B, C, and D, and HTN-Solver using methods learned in configuration A

performs worst.

Figure 6.21 shows the data for all planners in the Satellite domain. As in

the Zeno domain, this reveals only that FastForward is incomparably slower

than the other planners. Figure 6.22 shows the same data without FastForward.

This is a similar result to the Logistics domain. That is, HTN-Solver using

hand-crafted methods is fastest, while HTN-Solver with any of the sets of learned

methods takes approximately twice as long, and SGPlan6 is significantly slower

on large problems.

Figure 6.23 shows the times for all planners in the Rovers domain. These re-

sults are quite different from those found in the other domains. Most significantly,
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Figure 6.19: Average planning times in Zeno domain
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Figure 6.20: Planning times in Zeno domain, without FF
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Figure 6.21: Average planning times in Satellite domain
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Figure 6.22: Planning times in Satellite domain, without FF
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FastForward is able to solve problems in the Rovers domain very quickly. It,

SGPlan6, and HTN-Solver with the hand-crafted methods are all fast enough to

essentially lie along the horizontal axis on this graph. With the methods learned by

HTN-Maker, regardless of configuration, HTN-Solver performs comparatively

poorly. Among the different sets of learned methods, it is most efficient when using

those learned in configuration A and least efficient with those learned in configura-

tion D.
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Figure 6.23: Average planning times in Rovers domain

6.3.3 Analysis

In the four relatively easy domains, FastForward is no longer competitive with

a more recent planner such as SGPlan6, and is so uncompetitive as to make com-

parisons with HTN-Solver unnecessary. I have no explanation for the remarkable

effectiveness of FastForward in the Rovers domain, where it is actually slightly

faster than SGPlan6. As would be expected, HTN-Solver with methods that
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have been carefully hand-crafted by a domain expert performs much better than ei-

ther of the classical planners in four of the domains, and equally well in the remaining

one. When using methods that were learned by HTN-Maker, HTN-Solver is

not as efficient as when using the hand-crafted methods, but it is still far better

than either classical planner in all but the Rovers domain.

It is important to note that HTN-Solver has a significant advantage over the

classical planners: it may only consider one serialization of the goals, which is the

one that was used when creating a task network from a set of goals. The classical

planners are free to consider any serialization, and in fact do not know that a

particular serialization will work until it tries it. This feature may be as important

to reducing the search space that HTN-Solver sees as the use of methods is.

This same feature, however, can be a significant disadvantage in certain circum-

stances, and I believe this is why HTN-Solver is incapable of outperforming the

classical planners in the Rovers domain. For example, with the chosen serializa-

tion of goals into tasks, a rover might need to navigate a series of waypoints to

reach a certain location from which it needs a rock sample, take that sample, then

navigate to another waypoint from which it can contact the lander module (thus

completing a task), then navigate back to where it had taken the rock sample, take

a soil sample, navigate back to the waypoint from which it can contact the lander

(thus completing a second task), then return to another waypoint that it has passed

through four times already to gather another sample, and so forth. The classical

planners, which can interleave actions taken to accomplish various goals, will be

able to produce much shorter plans. When writing the hand-crafted methods for

HTN-Solver I was able to somewhat compensate for this disadvantage by adding

additional tasks and using them judiciously to simplify and compact the methods,

but to do this automatically would be quite difficult.

The various configurations of HTN-Maker do make a difference in planning

times, but not a very significant nor consistent one. Configuration A usually per-

forms best among them, but in Zeno the opposite is true. The methods from

configuration D give HTN-Solver an extraordinarily difficult time with a hand-

ful of problems, but perform comparably with the other configurations everywhere
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else. Without a clear winner, I cannot make a strong recommendation to use or

avoid subsumption checking or to prefer one generalization strategy over another.

Taking into account the results of the learning rate experiments I can make a weak

recommendation to try configuration A (with subsumption checking on and weak

generalization) first, but to recognize that depending on the features of the domain

any of the others may perform better.

6.4 Nondeterministic Domains

This section describes an evaluation of the effectiveness HTN-MakerND in learning

methods for nondeterministic planning domains.

6.4.1 Setup

The way of evaluating HTN-MakerND is quite similar to how HTN-Maker was

evaluated, but it uses only two domains: the nondeterministic version of Blocks-

World and RobotNavigation. First, I randomly generated a number of plan-

ning problems (500 for RobotNavigation, each with a single object to deliver,

and 1000 for Blocks-World, each with eight blocks to reconfigure). I then used

ND-Shop2 with a set of hand-crafted methods to produce a strong-cyclic solution

to each of these problems. (Weak solutions are not very interesting, and strong

solutions are not generally possible for these problems). I then simulated execu-

tion of these solution policies on their respective problems, producing 50 execution

traces from each RobotNavigation problem and 100 execution traces from each

Blocks-World problem. An execution trace is the plan produced by following

a particular path through the execution structure of a policy. Thus, this produced

25,000 learning examples in the RobotNavigation domain and 100,000 learning

examples in the Blocks-World domain, although many of them are very similar

to each other. Because of the branching nature of nondeterministic planning, many

more examples are needed in order to learn to correctly handle all possible outcomes.

I then pre-processed the planning domains and execution traces as described in
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Section 4.1 by partitioning the nondeterministic operators into a set of deterministic

operators and replacing each nondeterministic action in the execution traces with

the determinized version representing which effects actually occurred. Although

HTN-MakerND is usable in all of the configurations that HTN-Maker is, for all

of these experiments it used subsumption checking and strong generalization. Then

I ran HTN-MakerND on these learning examples, collected the learned methods,

and post-processed them to restore the nondeterminism.

I then generated testing problems. In the RobotNavigation domain this con-

sisted of 25 problems with a single object, 25 problems with two objects, and so

forth for three, four, and five objects. In the Blocks-World domain this con-

sisted of 50 problems with three blocks, 50 problems with four blocks, and so forth

for five, six, seven, and eight blocks. I recorded the time required to solve these

problems with two systems: ND-Shop2 with the methods that had been learned

by HTN-MakerND and MBP with the classical domain description. Both ND-

Shop2 and MBP were described in Section 2.3.2, and MBP is the benchmark

against with ND-Shop2 has been evaluated in prior publications. Each planner

was given one hour of CPU time to solve each problem in a virtual machine with

a 2.16GHz Intel Core Duo processor and 512MB of main memory, and as before I

have not distinguished between failures due to time constraints and failures due to

insufficient knowledge.

6.4.2 Results

When there are 100,000 learning examples, testing the ability to solve problems

after each one becomes quite tedious. Thus, I have only studied the learning rate in

the nondeterministic Blocks-World domain, and only for the first 5,000 learning

examples. Figure 6.24 shows this data. The test problems used here are the same

ones that were generated for evaluating the speed of solving problems with the

learned methods, and thus there are 50 problems of each of several sizes. The curve

labeled “3-block” represents the percentage of the 50 problems with 3 blocks in them

that could be solved after learning from a certain number of examples, and so forth.
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Figure 6.24: Learning rate in nondeterministic Blocks-World domain

Planning speed results in the Blocks-World domain are shown in Figure 6.25.

ND-Shop2 is able to solve problems of any tested size very quickly. MBP is able

to solve problems with 3-6 blocks quickly, but requires much more time for 7-block

problems and was unable to solve 39/50 8-block problems within the time limit.

ND-Shop2 solved all of the 3-block, 4-block, and 5-block problems, 45/50 6-block

problems, 43/50 7-block problems, and 38/50 8-block problems. Times for problems

that could not be solved by one of the planners are not included in the averages

for either planner. In those cases where ND-Shop2 was unable to solve a problem

it was able to determine that this would be the case very quickly, averaging 0.04

seconds for the unsolvable 6-block and 7-block problems and 0.03 seconds for the

8-block problems.

Planning speed results in the RobotNavigation domain are shown in Fig-

ure 6.26. Again, when ND-Shop2 is able to solve a problem it does so very quickly.

HTN-Solver failed to solve 1/25 1-object problems, 2/25 2-object problems, 2/25

3-object problems, 2/25 4-object problems, and 6/25 5-object problems. As before,

these problems are excluded from the graph. In this domain determining that no
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Figure 6.25: Average planning times in nondeterministic Blocks-World domain

strong-cyclic solution existed with the provided methods required significantly more

time, averaging 5.36 seconds for the 1-object problem, 12.2 seconds for the 2-object

problems, 80.8 seconds for the 3-object problems, 200 seconds for the 4-object prob-

lems, and 35.6 seconds for the 5-object problems. MBP was again able to solve

small problems quickly, but was much slower on 4-object problems and was only

able to solve 3/25 5-object problems within the time limit.

6.4.3 Analysis

In spite of the nondeterminism, HTN-MakerND learns very quickly to solve simple

problems in the nondeterministic version of the Blocks-World domain. The

variety of possible goals in a problem with only three or four blocks is rather small,

which explains why only a few examples are needed. As the number of blocks

increases, however, the number of unique problems increases exponentially; there

are more than 150 billion distinct 8-block problems. Although the learning rate for

6-block, 7-block, and 8-block problems levels off dramatically after the first 1000
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Figure 6.26: Average planning times in RobotNavigation domain

or so traces, the coverage does slowly continue to grow. The speed of planning

with HTN-Solver using the learned methods scales much better with problem

size than with MBP. Some of the test problems require knowledge that was not

demonstrated in the learning examples, but it appears that MBP will be unable to

solve any problems of moderate size at all, while HTN-Solver will be able to solve

many of them, and do so quickly.

6.5 Method Values

Finally, I have studied the effectiveness of the combination of Q-Maker and Q-

Reinforce to learn methods with cost estimates that will allow Q-Shop to quickly

find high-quality plans. Most planning systems are designed with one of the following

objectives in mind, or perhaps can do either depending on configuration: to find any

solution as quickly as possible, or to find an optimal solution as quickly as possible.

The former is a satisficing planner, while the latter is an optimal planner. Finding
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an optimal solution to a planning problem is usually very computationally expensive,

and thus optimal planners can only be used to solve much smaller problems than

satisficing planners. The goal for Q-Shop is a bit of a middle ground: finding

solutions that are reasonably good (though not necessarily optimal) while using no

more time and resources than a satisficing planner.

6.5.1 Setup

I decided to use the most straightforward measure of plan quality: shorter plans are

better. Thus, the reward received by the reinforcement learning agent when reducing

a task t with a method m is the number of primitive subtasks of m multiplied by

-1. Thus, when the agent maximizes its returns it will minimize the length of the

plans that it generates.

Two domains were used for this experiment: Blocks-World (the deterministic

version) and Satellite. For each of those domains, I randomly generated 600

training problems and solved them using FastForward [28]. These problems

and solutions formed 600 learning examples, which I processed with Q-Maker to

produce a set of methods with estimated method values. Then I randomly generated

an additional 600 tuning problems. I used Q-Reinforce to solve these tuning

problems using the methods that were learned by Q-Maker and updating the

value estimates for those methods.

I then randomly generated a third set of problems, 20 each of several sizes,

as a testing set. I attempted to solve these testing problems using several different

planners, shown in Table 6.7. FastForward and SGPlan6 are satisficing planners

as used in the earlier experiments, while Hsp∗F [38, 26] is an optimal planner that

was the runner-up in the sequential optimization track of the sixth international

planning competition (IPC-6) in 2008. Each planner was allowed a maximum of 30

minutes of CPU time for each problem.
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Planner Domain Formalization Abbreviation
FastForward classical FF

SGPlan6 classical SGPlan
Hsp∗F classical HSP

HTN-Solver classical + methods without values NoValues
Q-Shop classical + methods with unrefined values Phase1
Q-Shop classical + methods with refined values Phase1+2

Table 6.7: Planning systems tested

6.5.2 Results

FastForward, SGPlan6, HTN-Solver, and Q-Shop with both sets of methods

were able to solve all of the test problems in less than a second, but this was not

true of the optimal planner Hsp∗F . In fact, for problems of even very modest sizes

Hsp∗F was incapable of finding solutions within the 30 minute time limit.

Figure 6.27 shows the average plan quality achieved by each of the satisficing

planners in the Blocks-World domain. The data presented in this graph is the

average across all problems of a certain size of the ratio of the length of the plan

produced by the planner to the length of an optimal plan, multiplied by 100 to read

as a percentage. Thus, a data point of 100 means that the planner produced an

optimal plan, while a data point of 200 means that the planner produced a plan

that was twice as long as it could have been.

Of these planners, Q-Shop using the methods with value estimates that had

been both learned and refined consistently produced the highest-quality plans. In

fact, in all but three of the 420 test problems it found an optimal plan. Q-Shop using

methods with value estimates that had been learned but not refined performed next

best, producing plans on average 13.3% longer than optimal. HTN-Solver using

methods with no value estimates also performed well (13.6% longer than optimal), as

did FastForward (16.1% longer). SGPlan6 produced the lowest-quality plans,

averaging 73.7% longer than optimal. None of the planners seemed to be more

suboptimal on larger problems. In fact, the HTN planners seem to perform slightly

better on larger problems than smaller ones.
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Figure 6.27: Plan quality in Blocks-World domain

Figure 6.28 shows the average plan quality achieved by each of the satisficing

planners in the Satellite domain. Most of the planners did better in this domain,

although Q-Shop continues to produce the highest-quality plans in most circum-

stances (averaging 7.6% longer than optimal). The refining phase does not appear to

alter methods values in way that would change the planner’s behavior, as Q-Shop

produced the same plans whether it was using the method value estimates that had

been refined or those that were merely learned by Q-Maker. The worst performer

in this domain is HTN-Solver with methods that have no value estimates. Each

of the planners is trending toward less optimal plans as problem size increases (but

see note in Section 6.5.3).

6.5.3 Analysis

Q-Shop does indeed solve problems at the same order of speed as a satisficing plan-

ner (which, in fact, it is). As such, it is far more practical for use where optimality

is not a requirement than an optimal planner. The extra work of finding a good
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Figure 6.28: Plan quality in Satellite domain

plan is offloaded to the learning and refining phases.

While HTN-Solver with methods learned by Q-Maker without any value

estimates is already capable of finding solutions of similar quality to classical plan-

ners, adding value estimates taken from the learning examples leads to a significant

improvement. These value estimates can be further improved through refinement in

the Blocks-World domain, but apparently not in the Satellite domain. This

would indicate that the methods learned in the Blocks-World domain can be

used in ways that did not appear in the training examples, while those learned in

the Satellite domain can not.

It is surprising that Q-Shop is able to find optimal plans, and to do so quickly,

in a complex domain such as Blocks-World. Indeed, the problem of finding

a guaranteed optimal solution to a problems in the Blocks-World domain is

NP-hard, even with a domain-specific algorithm [24]. This difficulty comes from

deadlocks, when there are a set of blocks, each of which can be moved and needs to be

moved so that a different block in the set may be placed in the proper configuration.

Deadlocks have multiple ways in which they could be resolved, and there is no faster
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way, in general, to determine which resolution will lead to the shortest plan without

trying each. Q-Shop does not guarantee optimality, but did achieve it most of the

time in this experiment.

This is because of the way that test problems were generated for this experiment.

In other experiments using the Blocks-World domain the size of a problem was

the number of blocks that exist in that problem, with each block having an explicit

initial position and an explicit goal position. In this experiment, the size of a problem

remains the number of blocks that exist in that problem, but not all blocks have an

explicit goal position. Rather, the goal consists of only a single tower and does not

constrain the positions of blocks that are not part of that tower. I chose this because

Q-Maker considers only one task at a time and the method that accomplishes the

current task in the fewest number of steps might result in a state that is good for

some potential future tasks but bad for others. Thus, more difficult problems will

require on average longer solutions, but not much longer. Because there is only one

goal tower, there is a deterministic algorithm that will find an optimal solution: for

each block in the goal tower, from bottom to top, first move all blocks that are above

it to the table, then move it to its goal position. The methods learned by Q-Shop

encode this strategy (as well as others), and in most cases the values learned by

Q-Shop and refined by Q-Reinforce choose this strategy over other, suboptimal

ones.
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Chapter 7

Related Work

I have already discussed systems that use knowledge to solve planning problems in

Sections 2.1.2, 2.2.2, and 2.3.2. In this chapter I will focus on systems that learn

knowledge for planning. First, I discuss various work in learning for planning that is

not hierarchical in Section 7.1. In Section 7.2 I discuss learning knowledge structures

that are equivalent or similar to HTN methods. Section 7.3 discusses a variety of

other types of related work.

7.1 Learning For Non-Hierarchical Planning

There is a long history of research integrating automated planning and machine

learning [100]. Most of the research using machine learning techniques in the context

of planning, at least historically, has been attempts to gain knowledge that would

allow classical planners to solve planning problems more quickly.

7.1.1 Case-Based Planning

One of the most obvious ways to speed up planning is to memorize solutions to

problems, and when the problem is seen again, use the existing solution rather

than performing a computationally expensive search. Because many problems differ

from each other only in the names of constants or have extraneous details that are
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irrelevant to their solutions, a single plan may be generalized into a version that will

be a solution to many different planning problems. The influential Strips planning

system was extended to do exactly this [17]. Although they do not use the same

terminology, the authors consider a generalization strategy equivalent to what I call

strong generalization, but reject it in favor of a system equivalent to what I call

weak generalization.

The idea of storing and reusing solutions is fundamental to the field of case-based

reasoning (CBR) [41]. A case-based reasoning system maintains a library of cases,

which represent previously seen problems and solutions. In order to solve a new

problem, a case-based reasoner searches its case library for a a case that is similar

to the new problem and then adapts the solution in that case (or set of cases) to

solve the new problem. In case-based planning, cases consist of planning problems

and solutions [58].

Chef is one of the first and most important case-based planners [25]. Chef

stores in its case library not only information about solutions found, but also infor-

mation about planning failures. When a new problem is similar to previous problems

that have resulted in failure, additional goals are added to the problem to help avoid

those failure modes. Then Chef searches its case library for solutions to problems

with similar goals to the new problem and selects a solution to a problem that shared

as many goals as possible with the new problem. The planner then modifies this

solution to be a solution to the current problem by adding and removing individual

actions, and saves its experience as a new case documenting its success or failure.

Chef has only been used in a single domain, Szechwan cooking, in which it appears

the initial state is either always the same or is of little importance in determining

the applicability of a plan. It is not clear that the adaptation procedure used by

Chef would be effective in other domains.

The Adj system, on the other hand, uses domain-independent replanning al-

gorithms [20]. Adj begins with a plan that is not quite a solution, determines

what parts of it should be retained, and repairs the other parts to be relevant to

the current problem. It does so by identifying planning windows, which represent

problematic subplans, and attempting to modify them in a way that has no effect
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outside the planning window.

There are HTN and pseudo-HTN planners that utilize case-based reasoning as

well. BioPlanner does so in the domain of biological pathways, using domain-

specific rules to adapt plans in cases to new problems. Darmok does so in the

domain of playing real-time strategy games, by analyzing traces of a human player’s

decisions to learn plan snippets [68]. Traces must be annotated with explanations

of why each action was taken. These plan snippets consist of actions to be taken

either in parallel or in sequence and possibly subgoals to achieve, and are indexed

by the goal that the human indicates they were attempting to achieve with var-

ious conditions regarding the state of the world. During planning and execution

Darmok selects an appropriate plan snippet to achieve the current goal and, when

it encounters a subgoal, selects another plan snippet to achieve it.

Other case-based planning systems, such as Prodigy/Analogy, do not at-

tempt to modify and reuse existing plans, but rather store information about why

certain decisions were made as cases [88]. When solving new problems and facing a

decision with several alternatives, Prodigy/Analogy searches its case library for

a time when a similar decision needed to be made and attempts to apply the same

reasoning.

7.1.2 Learning Macro-Operators

Instead of retaining entire solutions, a planning system could instead store sequences

of only a few actions taken from a plan that could be combined in different ways

to solve different types of problems and, during planning, select an entire stored

sequence rather than an action. These plan pieces are called macro operators, since

they give a name to a sequence of traditional operators [43]. In the learning extension

to Strips discussed above, plans were stored in such a way that any contiguous

subplan could be reused rather than the entire plan, making each plan a set of

several macro operators [17]. The idea of macro operators is that if a sequence

of three operators is frequently used, a new pseudo-operator could be created that

has the combined effects of the three operators. When planning, the system could
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select this macro operator instead of any traditional operator. Since the selection

of a macro operator could move the system closer to a solution than the selection of

any traditional operator, this would speed the system up significantly. While this

can be a significant advantage, systems that produce a great many macro operators

will find that the branching factor of search is dramatically increased, which in turn

slows down planning. This is known as the utility problem [54, 29], and thus systems

that learn macro operators must limit themselves to only those macro operators that

will provide a clear benefit.

The Morris system learned macro operators only if they had one of two charac-

teristics: they represent very frequently used operator sequences, or they represent

non-obvious solutions to particularly difficult problems [53]. A strict limit was set

on the number of the first type of macro operators retained, and beyond this limit

a new one was only added if a less frequently used one could be removed. The

latter type of macro operators are found when a sequence of operators is judged not

very useful by the search heuristics used within Morris but in reality do lead to a

solution more quickly than other operators that the heuristic would prefer.

Macro operators could be made more useful by generalizing not just constants to

variables, but also the order of operations within the macro operator [57]. In some

cases the order of operators in a sequence is arbitrary, but in others it is essential

to the success of the plan. Analysis of the plan to determine relationships between

atoms added to or deleted from the state by one operator and required by another

can be used to find essential ordering constraints and relax others. Thus, macro

operators could be used not only in state-space planning, but plan-space planning

as well.

Macro-FF learns two types of macro operators, one from an analysis of the

domain itself and one from an analysis of solutions to training problems [6]. In order

to generate macro operators of the first type, Macro-FF looks for static facts in the

domain, meaning atoms that are either true or false in the initial state of a problem

and can not be altered by any actions. The Blocks-World domain has no static

facts, but many others do. For example, in the Logistics domain each location is

within one and only one city, and this can not change within a problem. Macro-FF
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creates abstract components by clustering constants that are linked by static facts,

and thus might create one per city in the Logistics domain, containing the city

itself and all of its internal locations. It then generates macro operators through

search such that each macro operator uses only pieces of a single abstract component.

A small number of simple training problems are then solved, and only those macro

operators that proved most useful in solving these problems are retained. The other

type of macro operator learned by Macro-FF is designed to exploit information

information in domains that utilize more complex representations.

The works on learning macro operators from analyzing plans are generally based

on a formalism known as explanation-based learning (EBL) [56]. In EBL, a system

is given a concept (such as is a solution to planning problem X ) and an example

(such as a plan), and formulates an explanation as to why the example demonstrates

the concept. In a classical planning context, this essentially means goal regression,

as described in Section 3.2.1. EBL is used in many other contexts as well, such as

learning artificial neural networks [48].

7.1.3 Learning Control Rules

In addition to determining what actions should be collected together into meaningful

macro operators, explanation-based learning can be used to learn control rules that

prioritize or eliminate entirely some choices that a planner could make, to help

it reach a solution more quickly. Prodigy/EBL is one of the earliest and most

well-studied systems that learns and plans with control rules [54]. There are four

concepts that Prodigy/EBL can learn: that a particular choice led to success,

which results in a rule giving that choice preference over other alternatives; that a

particular choice led to failure, which results in a rule pruning that choice; that a

particular choice was the only option that resulted in success, which results in a rule

that automatically selects that option; and that a particular choice resulted in an

undesirable interaction between the current goal and a goal that had previously been

accomplished, which results in a rule that other alternatives be given preference over

this option. After learning control rules from observation of traces, Prodigy/EBL
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attempts to compress rules into ones that are semantically equivalent but easier

to evaluate. While planning with control rules, the system constantly maintains

statistics about the effectiveness of each control rule, and deactivates those that

require more time to evaluate than they save.

The Static system, by contrast, uses partial evaluation to learn similar control

rules [15]. Partial evaluation does not use training examples, and instead learns

by directly processing the domain description. After selecting an arbitrary lifted

atom that could be a goal in a planning problem, Static chains backwards through

operators, generating a problem space graph, which is similar to a planning graph

[5] but backwards-chaining and uninstantiated. Analysis of a problem space graph

may yield rules similar to those learned by Prodigy/EBL, but without the bias

of specific training examples.

Rather than control rules, a control policy may be used, which specifies for each

state and set of goals what action should be taken next. This is very similar to the

policies discussed in Section 2.3.1 and Section 2.4.1, but can also be used to guide

a traditional classical planner. The LRW-Learn system iteratively improves such

a policy by generating its own training examples from random walks through the

domain [16].

A similar related work is learning concept-based policies, which specify which

actions to take based on concepts, which are Horn clauses over the atoms in the

domain and other concepts [51]. First, this system generates a set of all possible

concepts in the domain up to a certain complexity. A number of rules of the form

“if lifted concept applies to set of objects, apply action to them” are considered and

those that would make effective decisions most often in a small number of training

examples are retained.

Distill learns domain-specific planners from example plans annotated with rea-

sons actions were chosen [92]. These domain-specific planners use structured pro-

gramming constructs such as branching and repetition as well as planning-specific

constructs such as predicates and operators. Simple domain-specific planners are

essentially nested if statements in which the presence of lifted atoms in the current

state or goals select an appropriate operator or sequence of operators.
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7.1.4 Learning Action Models

A different strain of work is using machine learning not to speed up planning, but

to make planning possible at all. The systems discussed above, as well as HTN-

Maker and variants, assume that a complete and accurate description of the actions

in a domain are given. Other systems attempt to learn these action descriptions.

Gipo is a graphical user interface intended to assist in domain modeling, and

has been enhanced with learning to simplify the user’s work [52]. The user provides

a plan, consisting of operator names and parameters, as well as information about

object types and predicates. The system iterates through the plan, after each action

asking the user to specify, for each parameter of the action, what predicates the

action makes true about that parameter. The system uses this information and

heuristics to determine likely preconditions, negative effects, and positive effects for

each action.

In another work, a planning agent knows the current state, its goals, and the

names of actions [89]. It selects an action and either receives a complete description

of the subsequent state or a notification that the action may not be taken in the

current state. Based on these experiences, the agent updates its beliefs about the

preconditions and effects of the action based on rules such as “if an atom was not

in the current state and the action was successful, then it is not a precondition

of the action”. In an alternative configuration, when the system lacks sufficient

information to guarantee a solution to a problem, it requests one from a teacher,

which decreases the amount of experience needed to learn complete descriptions.

The Arms system learns action models from input plan traces whose intermedi-

ate states are partially observable, meaning that the results are always probabilistic

[98]. Arms uses a series of weighted constraints encoded by the user and extracted

from the input traces. For example, one of the constraints says that if a literal occurs

in the state before an action but not in the state after the action then it is likely

that literal is a negative effect of the action (another plausible explanation is that

the literal occurred in the state after the action but was not observed). Traces are

parsed and all such constraints are extracted and passed to a weighted Max-SAT
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constraint satisfier, which results in truth values for atoms having a high degree

of support. These constraints are then used to encode a best-guess model of the

preconditions, negative effects, and positive effects of each of the actions.

A different approach has been integrated into the Soar cognitive architecture

[94]. This system does not attempt to learn a precise, symbolic action model, but

instead learns from experience in a manner similar to case-based reasoning. When

the system applies an action to a state and receives information about the following

state, it stores this information in an episodic memory. When it wishes to predict the

outcome of applying that action to a different state, it searches its episodic memory

for a most similar state in which that action was previously applied, analyzes the

way the action modified that state, and predicts that it will modify the current state

in equivalent ways.

7.1.5 Other

Another related work learning abstractions for systems that formulate and refine

abstract plans, such as ABStrips [79]. The Alpine system learns abstraction hi-

erarchies for planning [40]. The idea of an abstraction hierarchy is that an abstract

plan may be found for a problem and then refined through subsequently decreasing

levels of abstraction to a concrete plan. HTNs can also be thought of as representing

plans at different levels of abstraction, but Alpine does not use task decomposi-

tion. Rather, an abstraction space consists of a relaxation of the original problem

in which some of the predicates are ignored. This may make a relaxed version of

the plan very easy to solve, but it may not always be possible to efficiently extend

an abstract plan as more predicates become relevant. The Alpine system auto-

matically explores a variety of abstraction spaces and chooses the best for a given

domain. The Paris system learns a more complex set of abstraction spaces than

those that can be generated by dropping predicates based on a user-provided generic

abstraction theory for the domain [4].

SteppingStone is another integrated planning system that learns how to solve

problems more efficiently [76]. When the reasoner in SteppingStone encounters
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a particularly difficult subproblem, it records as “stepping stones” a list of subgoals

that make achieving the subproblem easier. The next time that this difficult sub-

problem arises, the planner will begin by achieving the subgoals in the stepping

stones for that subproblem.

The L2Act system learns production rules in which a conjunction of statements

that an atom appears or does not appear in either the current state or the goals

yields an action that should be taken [39]. When planning, the system considers each

rule in order and applies the first one that matches. The learning component first

enumerates all rules that it will consider, then evaluates each potential rule on each

triple of state, goal, and action in some example plans. It then selects a rule following

some preference criteria (such as the rule with the highest ratio of triples in which it

chooses the correct action to triples in which it is applicable), removes the covered

triples from consideration, and repeats the process. The resulting series of rules

models a strategy for solving problems in the domain that, while not hierarchical,

is similar to the sort of strategies that HTN-Maker learns.

7.2 Learning For Hierarchical Planning

One area of research is the development of models of task relationships that are

similar to HTN methods through mixed-initiative systems in which users provide

examples and explanations or annotations of these examples [86, 19]. There have

also been a number of related works that learn hierarchical planning knowledge from

examples without human interaction. I have identified six characteristics by which

these systems may be classified:

• Does the system learn the relationships between tasks and subtasks, or is this

knowledge an input to the system?

• Does the system learn the preconditions of methods or equivalent knowledge

structures, or is this knowledge an input to the system?
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• Does the system have complete knowledge about the preconditions and ef-

fects of actions or the contents of intermediate states within plans, or is this

knowledge of the domain physics incomplete?

• Does the system support learning of tasks with rich semantics, or only simple

sub-goaling?

• Does the system learn incrementally, or does it need to process a complete set

of training examples before producing anything useful?

• Can the knowledge structures learned by the system be used to solve general

HTN planning problems, classically-partitionable planning problems, or only

classical planning problems?

The CaMeL system is designed to learn the preconditions of Shop-like methods,

assuming that the structure of those methods (the head and subtasks of each) is

already known [33]. The input to CaMeL consists of traces from an HTN planner,

showing the entire decomposition tree for a problem as well as all methods that were

applicable but not chosen at each decision point. All states in which a method was

selected or reported as applicable are taken as positive examples for that method,

while all states in which that method was not applicable (but its head matched the

current task) are taken as negative examples for that method. CaMeL then uses the

candidate elimination algorithm to extract, for each method, the set of preconditions

that best explains the positive and negative examples. Because the task-subtask

relationships are provided, I believe CaMeL should be able to learn preconditions

for methods that can be used to solve general HTN planning problems. The system

was later extended to incrementally learn approximate preconditions [32].

The DInCAD system also assumes that knowledge of method structures is

known but method preconditions are not [95]. It does not explicitly learn pre-

conditions for methods, but instead builds this sort of knowledge implicitly through

a case library in which each case stores a situation in which a method was used to

decompose a task. In order to adapt these cases to similar circumstances, DInCAD

requires an ontology of the types of objects in the domain and induces preferences
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System Task-Subtask Method Domain
Name Relationships Preconditions Physics

HTN-Maker Learned Learned Input
CaMeL Input Learned Input
DInCAD Input Learned Input
Light Learned Learned Input

X-Learn Learned Learned Input
Learn-HTN Input Learned Learned

L-HTN Partial Input Input

System Task Learning Learned
Name Types Style Expressivity

HTN-Maker Complex Incremental Class-Part
CaMeL Complex Nonincremental HTN
DInCAD Complex Incremental HTN
Light Simple Incremental Classical

X-Learn Simple Incremental Classical
Learn-HTN Complex Nonincremental HTN

L-HTN Complex Nonincremental HTN

Table 7.1: Hierarchical learning systems at a glance
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for which a case should only instantiated for either particular constants or particular

types of constants. Because the task-subtask relationships are provided, I believe

DInCAD with appropriate cases should be able to solve general HTN planning

problems.

Teleoreactive logic programs (TRLPs) are a variant of hierarchical task networks

using primitive skills (analogous to actions), nonprimitive skills (similar to meth-

ods), and concepts (Horn clauses specifying subgoal relationships). Nonprimitive

skills have heads, preconditions, and subskills. The head of each nonprimitive skill

is either a lifted atom or the head of a concept. The planning component of the

Icarus cognitive architecture is based on TRLPs, and it learns nonprimitive skills

as necessary [47]. Icarus operates in discrete cycles of observing the state of the

world, formulating a plan, and executing the first step of that plan until it observes

a world in which its goals hold. When the skills in the knowledge base of Icarus

are not sufficient to construct a plan directly, it uses a traditional search based on

the application of primitive skills, then learns new nonprimitive skills based on its

experience. In particular, at each step it learns a nonprimitive skill whose head is

the goal that the problem solver was trying to achieve, and whose subskills are ei-

ther primitive skills that it executed or subgoals that it achieved through the use of

other nonprimitive skills. TRLPs do not encode classically-partitionable problems,

though I expect it would be easy to make them do so. The Light system uses

similar procedures to learn teleoreactive logic programs by observing traces from an

expert [66, 50].

The DLight system is an extension of Light, intended to produce skills that

are less generally applicable than those of Light but more generally applicable

than the methods learned by HTN-Maker [65]. Specifically, DLight learns the

same type of structures as Light while maintaining information about dependencies

between goals for which actions may have been interleaved in input plans. To do so,

it requires that input plans include annotations for each goal that is accomplished

specifying a subplan over which this happens, and when these subplans overlap

making subgoals that would have become subskills instead preconditions in such a

way that necessary ordering constraints will be preserved.
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A different extension to Light is Lightning [42]. Lightning begins by using

Light directly to learn nonprimitive skills, which it then refines to add more spe-

cific preconditions. It does this by using the skills to solve planning problems and

observing both when the use of skill succeeds, producing a positive example, and

when the planner must eventually backtrack from the selection of a skill, producing

a negative example. An inductive logic programming algorithm produces a new,

more accurate set of preconditions based on the existing ones and the positive and

negative examples.

The X-Learn system receives planning traces as input and uses inductive gen-

eralization to learn d-rules, which, similar to the skills of Icarus, indicate how to

reduce a goal into actions and/or other subgoals [74]. X-Learn has been conceived

in the context of bootstrap learning where it assumes that the initial training ex-

amples solve simple goals and then more complex examples are given to solve more

complex goals. X-Learn is designed to exploit this iterative growth of knowledge

by reducing complex goals into subgoals it has already learned to solve.

Learn-HTN is an extension of the Arms [98] system to learn method precon-

ditions as well as action models [99]. Thus, it requires as input full HTN decomposi-

tion trees but incomplete and noisy information about the contents of intermediate

states and the way that actions modify them. Learn-HTN uses all the types of

constraints already present in Arms and adds constraints that method precondi-

tions must be true in the state from which they were used and that the preconditions

of a method should be related to the preconditions of its subtasks. In addition to

allowing the learning of method preconditions, these additional constraints can im-

prove the accuracy of action models as well. Because task structures are provided

as input, I believe Learn-HTN could learn preconditions for methods that could

be used to solve general HTN planning problems.

The L-HTN system requires partial decomposition trees that specify what tasks

were accomplished at each level of the three but not how the tasks at one level

are related to the tasks at another level [97]. It assumes that tasks at each level

are not interleaved, and attempts to determine which tasks at a given level are

subtasks of each task at the next-highest level, modelling this problem as Markov
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decision process. Tasks in this system have no semantics, and are merely names

given to sequences of subtasks that frequently appear together. Because the method

structures are learned from non-semantic data, it seems likely that the methods

learned could be used to solve general HTN planning problems.

7.3 Miscellaneous

The recursive structure of HTN methods is very similar to that of context-free

grammars, and so systems that learn grammars are somewhat related. Expectation-

maximization techniques have been applied to that problem and extended to learning

user preferences over possible task reductions [49].

One approach to fast optimal planning is A* search with an admissible heuristic,

but there is no heuristic that is dominant in all cases. Another work evaluates

multiple heuristics on a few states in a domain, determining for each state which

heuristic produces the best ratio of state-space reduction to time spent evaluating

the heuristic, and uses these states as training examples for a classifier [11]. When

the system reaches a state during planning, it uses whichever heuristic the classifier

chooses as most efficient.

Within the field of reinforcement learning there has been much study of Hier-

archical Reinforcement Learning (HRL) [3]. In HRL, reinforcement learning prob-

lems are modeled at different levels of abstraction. This is distinct from using

reinforcement learning in an inherently hierarchical context, as Q-Maker and Q-

Reinforce do.

The most similar type of HRL to HTN-Maker is options [84]. An option is a

policy in which the agent may decide to take a primitive action or a (nonprimitive)

policy, within which the agent would make a further choice. The decision as to

what states and actions should be grouped into an option is made by a domain

expert in the systems with which I am familiar, rather than learned. Hierarchies

of Abstract Machines (HAMs) are a similar approach [69]. A planner that uses

HAMs directly composes subpolicies into a complete policy that is a solution for the
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original problem.

There are also function approximation and aggregation approaches to hierarchi-

cal problem-solving in RL settings. Perhaps the best known technique is MAX-Q

decompositions [10]. These approaches are based on hierarchical abstraction tech-

niques that are somewhat similar to HTN planning. Given a Markov decision pro-

cess, the hierarchical abstraction of the MDP is analogous to an instance of the

decomposition tree that an HTN planner might generate. Again, however, the

MAX-Q tree must be given in advance and it is not learned in a bottom-up fashion

as in this work.
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Conclusions

HTN planning is an effective problem-solving paradigm, and has been successfully

used in many domains [61]. This wide adoption of HTN planning technology has

come at a high knowledge engineering cost of developing and debugging HTN meth-

ods for each new domain. As a result, several researchers have designed systems to

learn HTN methods or structures similar to HTN methods, each of which have their

own knowledge requirements. I have attempted to reduce this knowledge engineer-

ing burden with the HTN-Maker framework, which learns HTN methods from

example plans and semantically annotated tasks, which I believe is a lower thresh-

old of knowledge than any other system that has been proposed for learning HTN

methods or similar constructs. HTN-Maker incrementally adds to its knowledge

base by analyzing example plans to find action sequences that accomplish a task

and extracting from the plan knowledge about how the task was accomplished in the

form of recursive HTN methods. The preconditions and subtasks of these learned

methods are determined through a new, hierarchical form of goal regression.

The HTN-Maker framework is designed to be flexible, and when implementing

the algorithm, a number of decisions need to be made. First, a decision must be made

regarding nondeterministic selection of possible subtasks for methods, which will

ultimately determine the shape of decomposition trees using the learned methods.

Allowing the system to backtrack and learn all possible structures would result in

the learning of many redundant copies of the same knowledge, but some choices will
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result in methods that are inefficient or even dangerous depending on the design of

the HTN planner that will use them. The most straight-forward, generally useful

structure is one of right-recursion, in which the only nonprimitive task a method

may have as a subtask is a recursive call to the head of the method, and it must be

the last subtask.

Constants encountered in a plan may be generalized to variable symbols in a

way that produces methods applicable only to situations highly similar to those

from which a method was learned (strong generalization), or in a way that produces

broadly applicable methods (weak generalization). When using the former, more

training examples are needed and more methods must be learned in order for an

HTN planner to be able to solve all problems in a domain, and in most cases planning

with these highly-specific methods is slower than planning with the highly-general

methods that would be learned with weak generalization.

HTN-Maker will learn similar methods from similar examples, and will learn

identical methods from identical sub-examples or examples that differ only in unim-

portant ways. Thus, it is important to perform some pruning of learned methods.

In the simplest case, a method is discarded if it is identical to any existing method.

With subsumption checking enabled, a method is discarded if any other method

is provably more general than it and both will produce the same results. The use

of subsumption checking can drastically reduce the number of methods learned by

HTN-Maker without reducing the number of problems solvable with those meth-

ods, and does not have a substantial effect on the running time of HTN-Maker.

When learning only right-recursive methods, HTN-Maker is sound in the sense

that the methods it learns cannot be used in a way that is inconsistent with the

annotated tasks from which they were learned, even though the planner is not

aware of these annotations. If it is desirable for HTN-Maker to learn methods

that are not right-recursive, verification tasks can be added to the domain to ensure

soundness. HTN-Maker is also complete in the sense that, given a finite number of

examples from a domain it will learn a set of methods that can be used to solve every

problem in that domain that is solvable and can be expressed using the annotated

tasks provided to HTN-Maker. In the worst case, it will need to analyze a solution
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to each problem in the domain, but in practice a few hundred randomly-generated

examples are usually sufficient.

There exists a class of problems, called classically-partitionable, that cannot be

expressed in classical planning, yet can be solved by an HTN planner using only

methods learned by HTN-Maker. Such problems consist of a series of sets of

goals such that the first set must be achieved, then the second set must be achieved

(without necessarily maintaining the first set), and so forth. The HTN-Maker

algorithm is polynomial in the number and length of training examples and the

number of annotated tasks.

The HTN-Maker algorithm can be extended to learn in nondeterministic do-

mains, where actions have a set of possible outcomes rather than a single outcome.

HTN-MakerND is such an extension, which works by initially partitioning non-

deterministic actions into a set of deterministic pseudo-actions, learning methods

based on these pseudo-actions, and then recombining the pseudo-actions into non-

deterministic actions. In order for methods to be useful in a nondeterministic domain

they must have a structure that no subtask list includes a nondeterministic action

followed by another action. Like HTN-Maker, HTN-MakerND is sound as long

as it learns only right-recursive methods, and it is complete.

The objective of learning in HTN-Maker is completeness (the ability to solve

as many problems as possible) and to a lesser extent efficiency (the ability to solve

problems as quickly as possible). An additional common objective in planning is

optimality (the ability to find high-quality solutions to problems). The combination

of Q-Maker, Q-Reinforce, and Q-Shop attempts to improve optimality without

sacrificing completeness or efficiency. Q-Maker is an extension of HTN-Maker

that learns, along with each method, a numerical estimate of the value of that

method where higher-valued methods are believed to produce higher-quality plans

than lower-values methods in situations where both are applicable. Q-Reinforce

uses a Monte Carlo based reinforcement learning algorithm to refine the values of

estimates as it uses methods to solve problems and receives rewards for finding

high-quality solutions. Q-Shop solves problems by using at all times the method

with highest estimated value among all applicable methods, without backtracking.
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Thus, it should find a solution of reasonably high quality without expending any

more effort than an HTN planner that focuses solely on efficiency. The reward

received by Q-Reinforce and predicted by Q-Maker can be adjusted for various

notions of plan quality, but the simplest approach is that high-quality plans have

few actions and the reward for using a method is the negative of the number of

primitive subtasks of that method.

An experimental evaluation of HTN-Maker shows that a small number of ex-

amples is sufficient to learn a set of methods that can be used to solve most problems

in a domain, but there is a long tail of more complicated problems. Planning with

methods learned by HTN-Maker is slower than planning with methods written

by an expert, but this difference appears to be only a constant factor. Planning

with methods learned by HTN-Maker scales much better with problem size than

classical planning in domains that are well-suited to the task representation that

has been chosen for HTN-Maker, but poorly in a domain in which planning with

hand-crafted methods using the same task structure also performed poorly. Plan-

ning with methods learned by HTN-MakerND scales much better with problem

size than the traditional model-checking alternative for nondeterministic domains.

Planning with methods learned by Q-Maker and refined by Q-Reinforce is in-

comparably faster than planning systems that guarantee an optimal solution, and at

least as fast as classical planners that focus on efficiency. Solutions produced from

the methods learned by Q-Maker and refined by Q-Reinforce are of higher qual-

ity than those produced by classical planners that focus on efficiency, and in many

cases are optimal.

8.1 Future Work

Evaluation of HTN-Maker and related algorithms is currently restricted to do-

mains that can be represented using the relatively simplistic action formalism used

throughout this document, but real-world problems may require more complex rep-

resentations. As a result, many modern planning systems support extensions such
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as durative actions, negative preconditions, numeric quantities, type ontologies, ex-

istential and universal quantification, preferences, conditional effects, disjunction,

derived predicates, and modal constraints to the representation language. Sup-

porting any of these would require extending the reasoning mechanisms on which

HTN-Maker is based, and in most cases it is not obvious how to do so. Neverthe-

less, extending the representation language used by HTN-Maker would enable a

more thorough and interesting evaluation, and is probably an essential step before

using HTN-Maker outside of benchmark, “toy” domains.

Furthermore, classical planning makes a number of assumptions that may not

be valid in real-world domains, among them that the number of states be finite,

the the current state of the world be completely known to the system at all times,

that actions have one predictable outcome, and that no external agents can affect

the world. HTN-Maker has already been extended to HTN-MakerND, which

can operate in domains where actions are nondeterministic and, by modeling the

actions of outside agents as nondeterminism in the actions chosen by the planner,

domains where external agents are able to modify the world. Extending HTN-

Maker to work in domains where other classical assumptions are invalid is probably

also necessary before HTN-Maker can be used to assist real-world knowledge

engineers.

Yet another current limitation to the types of domains in which HTN-Maker

can be used effectively is the rigid nature of annotated tasks. As discussed in

Section 6.1, a method that has been learned for a task to create a pile of 100 blocks

cannot be used to accomplish tasks to create piles of 99 or 101 (or any other number)

of blocks unless another method has been learned that has the task of creating a

pile of 100 blocks as a subtask. It would be desirable to be able to create a flexible

annotated task for creating a pile of a variable number of blocks, but it is not clear

how this could be incorporated into the framework.

The objective of HTN-Maker has been to reduce the knowledge engineering

burden of extending HTN planning to new, real-world domains in which no methods

had yet been developed and doing so manually would be prohibitively expensive.

Thusfar, neither HTN-Maker nor any other system for learning HTN methods or
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similar structures has been used in this way. As discussed above, real-world problems

that are interesting enough to make this a worthwhile endeavor typically require a

more complex representation language than that currently supported by HTN-

Maker, and may even require relaxing classical assumptions about the domains to

learn.

The use of reinforcement learning to rank methods has only begun to be explored.

Monte Carlo techniques were used in this work because they are simple and do not

require an explicit model of transitions, but temporal-difference techniques would

likely enable Q-Maker and Q-Reinforce to more quickly converge toward values

that accurately predict the quality of plans produced by methods. The framework

of Q-Maker, Q-Reinforce, and Q-Shop has not yet been evaluated with quality

metrics other than the inverse of plan length. Although it should generalize very

easily to schemes in which some actions have different costs than others, it would

also be interesting to see its use in schemes where the quality of a plan is not purely a

function of the actions contained within it. One such example is strategy formulation

in computer games, where a high quality plan is one that wins, regardless of how it

does so.

Although HTN-Maker can be configured to produce methods that are more

general or more specific, a post-processing step like that used in Lightning [42]

would probably improve either result. More knowledge-based post-processing steps

would be interesting as well, such as replacing several methods that do the same

thing in disparate circumstances with a single method applicable in all those situa-

tions, in effect creating a method that subsumes the others.

The techniques used in DLight [65] might also be useful here. In some domains,

there are preconditions that a human can readily determine do not matter, but it has

not been clear how HTN-Maker could determine this automatically. For example,

in the Logistics domain the same actions need to be taken to move a package into

the proper city regardless of what will need to be done with that package once

it reaches the proper city. The current HTN-Maker algorithm has no way of

knowing this, and thus learns separate methods for each combination of intercity

and intracity transport strategy. Even in the best cases HTN-Maker learns far
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more methods for a domain than a human expert would write because it currently

lacks the ability to recognize these situations.

The language of annotated tasks permits far more expressive task hierarchies

than have been tested thusfar. For example, one possible way to achieve the results

described in the previous paragraph without adding further reasoning capabilities to

HTN-Maker would be to use separate tasks for intercity and intracity transport

by adding preconditions to annotated tasks. Adding additional knowledge through

the annotated tasks might result in a more compact and easily understood set of

methods that can be used for faster planning than those produced using the absolute

minimum knowledge.

No attempt has yet been made to transfer knowledge learned by HTN-Maker

for one domain into a different but related domain. Because the methods learned by

HTN-Maker can capture structural knowledge about a domain, this knowledge

may be useful in other domains that do not use the same predicates or actions, yet

require the same type of problem-solving strategies.

A comparative evaluation of HTN-Maker to some of the other systems de-

scribed in Section 7.2 would be difficult for several reasons. Notably, each system

has its own types of input and produces knowledge constructs that are similar in

style but could not be used by the same planners. Still, an experimental evaluation

of the utility of the knowledge learned by these varying systems would be quite

interesting. Also, I have made the claim that producing correct action models and

annotated tasks for a domain is a significantly simpler knowledge engineering task

than producing, for example, primitive skills and a concept hierarchy for Light. It

would also be interesting to perform a study in which knowledge engineers with a

basic understanding of planning technology but no training in the specific knowledge

requirements of any system were asked to produce the inputs to HTN-Maker and

other related works to determine which frameworks in fact have the least arduous

knowledge engineering burden.
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[42] Tolga Könik, Negin Nejati, and Ugur Kuter. Inductive generalization of an-

alytically learned goal hierarchies. In Luc De Raedt, editor, Proceedings of

177



BIBLIOGRAPHY

the 19th International Conference on Inductive Logic Programming (ILP-09),

pages 65–72. Springer, July 2009.

[43] Richard E. Korf. Macro-operators: a weak method for learning. Artificial

Intelligence, 26(1):35–77, 1985.

[44] Ugur Kuter and Dana Nau. Forward-chaining planning in nondeterministic

domains. In George Ferguson and Deborah McGuinness, editors, Proceedings

of the 19th National Conference on Artificial Intelligence (AAAI-04), pages

513–518. AAAI Press, July 2004.

[45] Ugur Kuter, Dana Nau, Marco Pistore, and Paolo Traverso. Task decompo-

sition on abstract states, for planning under nondeterminism. Artif. Intell.,

173(5–6):669–695, 2009.

[46] Ugur Kuter, Dana Nau, Elnatan Reisner, and Robert P. Goldman. Using

classical planners to solve nondeterministic planning problems. In Jussi Rin-

tanen, Bernhard Nebel, J. Christopher Beck, and Eric A. Hansen, editors,

Proceedings of the 18th International Conference on Automated Planning and

Scheduling (ICAPS-08), pages 190–197. AAAI Press, September 2008.

[47] Pat Langley and Dongkyu Choi. Learning recursive control programs from

problem solving. Journal of Machine Learning Research, 7:493–518, 2006.

[48] Geoffrey Levine, Ugur Kuter, Kevin Van Sloten, Gerald DeJong, Derek Green,

Antons Rebguns, and Diana Spears. Using qualitative domain proportionali-

ties for learning mission safety in airspace operations. In Héctor Muñoz-Avila
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Avila, J. William Murdock, Dan Wu, and Fusun Yaman. Applications of

SHOP and SHOP2. IEEE Intelligent Systems, 20(2):34–41, 2005.

[62] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock,

Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. Journal of

Artificial Intelligence Research, 20:379–404, 2002.

[63] Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. SHOP:
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In Héctor Muñoz-Avila and Ugur Kuter, editors, Proceedings of the IJCAI-09

Workshop on Learning Structural Knowledge from Observations (StrucK-09),

July 2009.

[69] Ronald Parr. Hierarchical Control and Learning for Markov Decision Pro-

cesses. PhD thesis, University of California at Berkeley, 1998.

[70] Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS

and the situation calculus. In Ronald J. Brachman, Hector J. Levesque, and

Raymond Reither, editors, Proceedings of the 1st International Conference on

Principles of Knowledge Representation and Reasoning (KR-89), pages 324–

332. Morgan Kaufmann, May 1989.

181



BIBLIOGRAPHY

[71] J. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order plan-

ner for ADL. In Bernhard Nebel, Charles Rich, and William R. Swartout, ed-

itors, Proceedings of the 3rd International Conference on Principles of Knowl-

edge Representation and Reasoning (KR-92), pages 103–114. Morgan Kauf-

mann, October 1992.
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and Marco Antonio Gómez-Mart́ın, editors, Artificial Intelligence for Com-

puter Games, pages 83-101. Springer, 2011.

187



BIBLIOGRAPHY
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