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ABSTRACT

We report an investigation into strategies, algorithms, and software tools for document image content extraction

and inventory, that is, the location and measurement of regions containing handwriting, machine-printed text,
photographs, blank space, etc. We have developed automatically trainable methods, adaptable to many kinds
of documents represented as bilevel, greylevel, or color images, that offer a wide range of useful tradeoffs of
speed versus accuracy using methods for exact and approximate k-Nearest Neighbor classification. We have
adopted a policy of classifying each pixel (rather than regions) by content type: we discuss the motivation
and engineering implications of this choice. We describe experiments on a wide variety of document-image and
content types, and discuss performance in detail in terms of classification speed, per-pixel classification accuracy,
per-page inventory accuracy, and subjective quality of page segmentation. These show that even modest per-
pixel classification accuracies (of, e.g., 60–70%) support usefully high recall and precision rates (of, e.g., 80–90%)
for retrieval queries of document collections seeking pages that contain a given minimum fraction of a certain
type of content.

Keywords: document content extraction, content inventory, Bayes decision theory, classification, k Nearest Neighbors,
k-d trees, CART, spatial data structures, computational geometry, hashing, versatility

1. INTRODUCTION

We report on an investigation of algorithms for document image content extraction:

Given an image of a document,
find regions containing machine-printed text, handwriting, photographs, graphics, line-art, logos, noise, etc.

We approach this problem in its full generality, attempting to cope with the richest diversity of document, image, and
content types that occur. We have reported preliminary results in the development of highly versatile1 and voracious2,3

classifiers for this problem domain. Types of document images that we accept include color, grey-level, and bilevel (black-
and-white); also, any size or resolution (digitizing spatial sampling rate); and in any of a wide range of file formats (TIFF,
JPEG, PNG, etc). We convert all image file formats into a PNG file in the HSL (Hue, Saturation, and Luminance) color
space; bilevel and greylevel images convert to HSL images with fixed values for hue and saturation. We have gathered a
database of over 9000 sample page images containing the following types of content: machine print (MP), handwriting
(HW), photographs (PH), line Art (LA), math notation (MT), maps (MA), engineering drawings (ED), chemical drawings
(CD), “junk” (JK, e.g. margin and gutter noise), and blank (BL). We are also gathering samples of each content type
across a wide range of languages and image qualities and from several historical periods.

We have adopted the policy of classifying individual pixels, not regions as most previous R&D projects have done.
This avoids the arbitrariness and restrictiveness of limited families of region shapes, as illustrated in Figures 1 and 2.

In all examples shown, each test image is on the left with the results of classification next to it on the right as a
classification image where the content classes are show in color: machine print (MP) in dark blue, handwriting (HW) in
red, photographs (PH) in green or blue-green, blank (BL) in white, and unclassified in light grey. Each image possesses a
thin border of unclassified pixels (difficult to see at this resolution) due the fact that feature extraction requires a region
of a minimum size. Some other pixels remain unclassified due to sparsity of training data in the k-D tree.

[As published in Proc., IS&T/SPIE Document Recognition & Retrieval XIV Conf. (DRR2007), San Jose, California,
January 28 – February 1, 2007. Figures 3 and 4 have been corrected and reformatted to conform to a conventional
confusion-matrix format. ]



Figure 1. A color image of a magazine page, before classification (left) and after classification (right). Our policy of
classifying pixels has the advantage of adapting to arbitrary layouts (here, regions with circular boundaries). Classification
of text embedded in regions of constant color is sensitive to type size. The pink coloration in the background is due to a
scattering of isolated blank pixels misclassified as handwriting. The per-pixel classification accuracy is 52.9%.

Figure 2. A color image of a newspaper weather page, before classification (left) and after classification (right). Here,
in addition to a complex nonrectilinear layout, machine-print text is interspersed with small photographs and other non-
textual artwork. The subjective segmentation of tightly spaced blocks of small text is remarkably good given the low
print quality of the newspaper. The per-pixel classification accuracy is 60.8%.



This flexibility has another advantage, as we will show: it allows greater accuracy in inventory statistics, by which we
mean summaries of each page estimating, for each content class, the fraction of page area dominated by that class.

Thus both training and test datasets consist of pixels labeled with their ground-truth class (one of MP, HW, PH, BL,
etc). Each pixel datum is represented by scalar features extracted by image processing of a small region centered on that
pixel; these features are discussed in detail in Section 3.

2. CLASSIFICATION ALGORITHMS

We are investigating a wide range of automatically trainable classification technologies, including brute-force k-Nearest
Neighbors (kNN), fast approximate kNN using hashed k-d trees, classification and regression trees, and locality-sensitive
hashing.

2.1. Brute-force k-Nearest Neighbors

We have implemented 5NN under the Infinity Norm using a brute-force algorithm. We regard this as our “gold standard”
and compare other faster but usually less accurate methods to it.

2.2. Hashed k-D Tree Classifier

We have previously reported our non-adaptive k-D tree classifier using fixed cuts, sped up by hashing bit-interleaved
addresses2,3 which runs up to several hundred times faster than brute-force 5NN with only a small loss in accuracy in
this domain. The experimental results described here were achieved using this classifier, hashing 24 bits of bit-interleaved
address. We also sped it up by a technique of “inverted classification” (“filtering” in3), in which test data are read first
and hashed into the k-D tree; as the training data is read, data that hashes to an empty cell (i.e. one that contains no
test data) can be discarded, while those that hash into occupied cells are of course used to “annotate” the relevant testing
points with their class and distance (each testing point owning a list of up to k nearest neighbors so far). The principal
advantage of this technique is that it allows us to constrain memory usage to O(m), where m is the testing set size, with
no sacrifice in accuracy and with the same computational cost (measured in numbers of distance computations). As test
and training sets grow, inverted classification scales well since the test set can, with little or no loss in accuracy, be split
into separate test sets as needed to maintain memory footprints small enough to avoid thrashing.

Since inverted classification allowed us to avoid thrashing, observed runtime was roughly proportional to the number
of distance computations performed. For example, given a testing set of 3.3 million samples and a training set of
35,247 samples∗ a brute-force kNN classifier would perform over 110 billion computations, whereas the hashing classifier
performed only 7.5 billion, a speed-up of a factor of 15.5. This allowed the classifier to run to completion in 47 CPU minutes,
permitting frequent experiments which allowed a more thorough investigation of effective combinations of features. These
results were typical of our experiments with the hashing inverted classifier.

2.3. Classification and Regression Trees

We have implemented one variety of Classification and Regression Trees (CARTs).4 In preliminary trials, accuracy is
comparable to Hashed K-D Trees, and classification speed is somewhat faster, but training is orders of magnitude slower,
restricting the size of data sets we can experiment with.

2.4. Locality-Sensitive Hashing

We have also implemented a Locality-Sensitive Hashing classifier5.6 This is another fast approximation to k-NN. The key
idea is to “hash the points using several hash functions so as to ensure that, for each function, the probability of collision
is much higher for objects which are close to each other than for those which are far apart”.7 The method enjoys, with
high confidence, sublinear time complexity as a function of the size of the training set, but it is exponential in the number
of dimensions. Indyk et al report large speedups over various tree-search methods on specially devised training sets. It
was originally designed for (single) nearest neighbor queries, so we are working to extend it to approximate kNN.

3. CHOOSING THE FEATURE SET

Each pixel (the “target pixel”) is represented by scalar features extracted by image processing of a small region centered
on that pixel. We have investigated more than 60 features, all extracted from the luminosity channel (ignoring the hue and
saturation channels): we selected twenty-six of these for the experiments reported here, for reasons summarized below.
All feature values are scaled to lie within the (convenient but otherwise arbitrary) integer range 0-255.

∗This training set is small due to the decimation described in Section 4.2.



3.1. Average Region Luminosity

A group of four features: the average luminosity values of NxN-subregions centered on the target pixel (for N=1,3,9,27).
The algorithm makes five successive passes. In the first pass, it simply copies all the pixel luminosity values in an array.
In the second through fourth passes, it calculates the sum of the luminosity values needed for the successively larger boxes
by taking the sums of the values held in the smaller boxes (so 9 smaller boxes are added to create an larger one, at each
pass). A final pass outputs the values to the feature array, dividing the values in each of the boxes by the number of
pixels summed in that box.

On small, relatively specialized, training and test datasets, these features discriminated handwriting from machine
print well, but their effectiveness lessened as the training set grew and diversified. Unsurprisingly perhaps, the larger the
NxN region the less discriminating they were.

3.2. Region Luminosity Difference

A group of sixteen features: each is the difference in total luminosity between halves of NxN regions cut in four directions:
horizontal, vertical, and the two diagonals.

These are effective in discriminating between BL (blank) and other content classes, with the (still somewhat mysterious)
exception of HW (handwriting).

The following five groups of features extract features from straight lines of pixels centered on the target pixel, at each
of the four directions. The length of these lines (in pixels) is an essential parameter of course: we’ll give specifics of these
choices at the end of this section.

3.3. Average Line Luminosity

The average of luminosity values along the line.

These assist in discriminating between handwriting and machine print. However, the diagonal features proved less
effective than the horizontal and vertical features and were discarded.

3.4. Line Luminosity Average Difference

The average of absolute differences of luminosity between adjacent pairs of pixels along the line.

The diagonal variants of these proved to be effective especially in combination with the average line luminosity features.
But the horizontal and vertical variants were less effective and were discarded,

3.5. Line Luminosity Max Difference

The maximum among absolute differences in luminosity between each pair of adjacent pixels along the line.

These are effective especially in combination with 3.3 and 3.4: particularly, they help discriminate BL (blank) from
other classes. We use all of these.

3.6. Distance to Max-difference Pair

The distance from the target pixel to the closest pair of pixels that possess a maximum luminosity difference.

3.7. Distance to Max-difference Pixel

The distance from the target pixel to the closest one with a maximum absolute luminosity difference with the target pixel.

Early experiments suggested that the two groups of features (immediately above) were not helpful. But when we
revised them (as described below), they improved....

3.8. Revised Distance to Max-difference Pair

These are features 3.6 computed in eight directions radiating out from the target pixel (rather than in four directions
centered on it).

3.9. Revised Distance to Max-difference Pixel

These are features 3.7 computed in eight directions radiating out from the target pixel.

These two groups 3.8 and 3.9 proved not to be effective unless they were used together: then they were revealed to
be the best features for discriminating between PH (photographs) and the other classes.



3.10. Difference Between Two Distances

These are differences between corresponding features 3.8 and 3.9. They did not assist classification (and in fact increased
the error rate). We tried other ways to combine features 3.8 and 3.9, including encoding the luminosity max-difference
into the distance by multiplication: but we saw no improvement.

3.11. Feature Combination

Having tested many (but, of course, not all possible) combinations and variations of the features described above, we
gradually converged on the following twenty-six:

Region luminosity average: 1x1 region;

Line luminosity average: horizontal and vertical, line-length 25 pixels;

Line average difference: line-length 25;

Line luminosity average difference: diagonals only; line-length 25;

Line luminosity max difference: four directions, line-length 41;

Revised distance to max-difference pair: eight directions, line-length 41; and

Revised distance to max-difference pixel: eight directions, line-length 41.

The search for better sets of features is an open-ended engineering exploration. We still hope to identify a smaller yet
more effective set. We are presently implementing a family of Haar features.

4. EXPERIMENTAL DESIGN

We have experimented with two data sets of page images: a development set (A) containing 28 images; and a benchmarking
set (B) containing 117 images. For data set (A), thirteen images were placed in the training set, and the rest in the test
set; then set (A) was used to drive our choice of twenty-six features. For data set (B), 31 images were placed in the
training set, and the rest in the test set; then set (B) was used to train and test classifiers using these features; the
results of these tests are reported here. Together the two sets contain MP, HW, PH, and BL content. Their text includes
English, Arabic and Chinese characters each represented by bilevel, greylevel, and color examples. The selection of test
and training pages was random except that for each test image there was at least one similar, but not identical, training
image. Thus these experiments test the discriminating power of the features and weak generalization (to similar data) of
the classifiers, but they do not test strong generalization to substantially different cases.

Each content type was zoned manually (using closely cropped isothetic rectangles) and the zones were ground-truthed.
The training data was decimated randomly by selecting only one out of every 3000th training sample. This policy was
suggested by experiments described later in Section 4.2.

We evaluated performance in three ways:

Per-pixel accuracy: the fraction of all pixels in the document image that are correctly classified: that is, whose class
label matches the class specified by the ground truth labels of the zones. Unclassified pixels are counted as incorrect.
This is an objective and quantitative measure, but it is somewhat arbitrary due to the variety of ways that content
can be zoned. Some content—notably handwriting—often cannot be described by rectangular zones. This in some
cases will lead to a per-pixel accuracy score being worse than an image may subjectively appear to be. However,
this metric does provide a simple generalization of how well the classifier is performing: for the test set for data set
B, the average per-pixel accuracy score was 62.4%. The complete confusion matrix is given in Table 3.

Our classifier is best at recognizing MP and PH, has some difficulty with BL, and has a lot of trouble with HW,
misclassifying 43% of HW pixels as BL. An analysis of the raw data, given in Table 4, reveals that, in spite of the
high overall error rate, each content type is represented by a roughly similar number of pixels whether by ground
truth or as a result of classification. As mentioned before, we do not necessarily expect the per-pixel accuracy score
to be extremely high due to arbitrariness and even inconsistency in zoning. However, it seems to be reasonable to
expect zoning to reflect the overall amount of each content type found in an image, and we hope the classifier will
do the same.

It can be instructive to analyze the raw pixel-count data for a particular page image (shown in Figure 1), as given
in Table 5.

This image had an overall per-pixel accuracy score of 52.9%, which might suggest that classifier performance was
mediocre. However, the raw pixel-counts reveal that a large number of pixels that were zoned as machine print



BL HW MP PH Type1

BL 0.159 0.028 0.032 0.005 0.065
HW 0.028 0.023 0.014 0.001 0.043
MP 0.046 0.029 0.353 0.039 0.114
PH 0.023 0.007 0.046 0.167 0.076

Type2 0.097 0.064 0.092 0.045 0.298

Figure 3. Confusion matrix for per-pixel classification of the test set of data set B, which contained 178 million test
pixels (40M BL; 12M HW; 83M MP; and 43M PH). The rows label ground truth content types; the columns label the
content types assigned by the classifier. The Type1 column entries summarize error rates for each true class (that is,
the frequency with which that true class is misclassified). The Type2 row entries summarize error rates for the classes
resulting from classification (that is, the frequency with which that classifier decision is incorrect). The bottom right
entry gives the overall error rate: 29.8%.

BL HW MP PH Type1

BL 28385810 4992050 5678089 963871 11634010
HW 5054560 4128702 2422925 228225 7705710
MP 8150037 5196000 63137187 6968964 20315001
PH 4080809 1321661 8310500 29773773 13712970

Type2 17285406 11509711 16411514 8161060 53367691

Figure 4. Table of raw pixel counts for per-pixel classification of the test set of data set B. The rows label ground truth
content types; columns label the content types assigned by the classifier. The Type1 column gives totals of erroneously
classified samples for each true class. The Type2 row gives totals of erroneously classified samples for each classifier-
reported class. The bottom right entry gives the total number of erroneously classified samples, out of a total of 178793163
samples.

BL HW MP PH Type1

BL 160494 47200 5267 2869 55336
HW 0 0 0 0 0
MP 209381 146351 1011957 112532 468264
PH 28938 20577 177956 502363 227471

Type2 238319 214128 183223 115401 751071

Content True Classifier Accuracy

BL 6.817 24.18 20.96
HW 0 11.3 0
MP 46.75 42.14 75.85
PH 23.06 22.38 70.91

Figure 5. Results on the page shown in Figure 1. For this image the per-pixel accuracy is 52.9%. The table on top gives
the raw pixel-count classifier results (there are no HW pixels in the ground-truthed zoning). Derived from this is the table
below which gives the page inventory—that is, for each Content class: the True fraction of its pixels classified as that
class; the Classifier-reported fraction of that class; and the per-pixel Accuracy of the classifier on that class. Note that
although the per-pixel accuracies on MP and PH are below 80%, the classifier-reported fraction is very close to the true
fraction for both of them. In this way we have often seen that retrieval based on inventory scores is superior to per-pixel
classification accuracy.



Threshold Recall Precision

0.0 1.0000 1.0000
0.1 1.0000 0.9104
0.2 0.9643 0.9152
0.3 0.8800 0.9362
0.4 0.8409 0.9250
0.5 0.7586 0.8148
0.6 0.6000 0.7500
0.7 0.5714 0.8000
0.8 0.6667 0.6667
0.9 — 0.0000
1.0 — —

Figure 6. Recall and precision scores for the query “Find all pages with at least the fraction T of machine-print (MP)
pixels,” over a range of thresholds T from 0.0 to 1.0, on the test set of data set B. Values left blank reflect queries which
do not return any images.

Figure 7. Precision and recall curves for blank (BL), handwriting (HW), machine print (MP), and photograph (PH)
content classes, as measured on the test set of data set B. The x-axis represents the threshold value T and the y-axis
the precision (or recall) scores for finding all images with at least the fraction T of each content class, compared to the
ground truth results.

were misclassified approximately uniformly across the other three classes, which is not usually the case. Thus a
better interpretation is that zoning on this page was problematic.

The raw pixel count data is useful for identifying exactly what type of errors the classifier is making relative to the
ground truth. We see that BL, MP, and PH pixels are all classified correctly nearly 70% of the time. As mentioned
before, we see that HW is being recognized very poorly, and actually more pixels are being classified as BL than
HW. This also may point to problems with zoning methodology.

Per-page inventory accuracy: for each content class, we measure the the fraction of each page area that is classified
as that class. That is, each page is assigned four numbers—one for each of BL, HW, MP, and PH—which sum to
one. This description allows a user to query a data base of page images in a variety of natural and useful ways,
For example, in an attempt to retrieve all page images with large photographs with captions, she might ask for all
pages containing least 70% photograph and 10% machine print.

We have analyzed the performance of queries of this form: “find all images that contain at least the fraction T
of pixels of content class C.” This is of course an information retrieval problem for which precision and recall are
natural measures of performance:8–10 precision is the fraction of page images returned which are relevant; and recall
is the fraction of relevant documents that are returned.

We issued queries, for every content class, over the full range of threshold values, and summarized the results with
precision and recall curves as a function of threshold. For example, the precision and recall scores for MP are shown
in Table 6.

Thus the query “Find every image containing at least 30% machine print” can be answered with 88% recall and
94% precision.

The complete set of four recall and precision curves are shown plotted in Figure 7.



Each curve must of course start at 100% at threshold 0. As we saw from the confusion matrix before, performance
on handwriting is poor. On blank we see a much higher recall rate; but precision is substantially lower and decreases
steadily. This implies that more content is being classified as blank than was zoned. This conclusion is not surprising
as we use rectangles in zoning which cannot accurately capture the layout of a page.

Both machine print and photographs, which appeared to perform best from analyzing the confusion matrix, also
enjoy high precision and recall rates, which do not decline as quickly as the other classes. Interestingly, both curves
for each class cross each other multiple times; and they are often not monotonic.

If we assume that all threshold values (from 0.0 through 1.0) are equally likely, we can compute expected recall and
precision scores for each class:

Recall Precision

BL 0.967 0.556

HW 0.451 0.801

MP 0.809 0.772

PH 0.760 0.788

It is interesting that even at this early stage of development of these document inventory methods, MP and PH
enjoy usefully high expected recall and precision, far higher than the per-pixel classification accuracy scores would
suggest. This good performance persists up to a threshold of about 60%; the fall off after that can be attributed to
the rarity of such images in the test set. Most images in the test set were of mixed content type and do not contain
high percentages of any single content class.

Document content inventory precision and recall curves allow a richer and, arguably, more realistic analysis of
performance than per-pixel recognition rates and confusion matrices. Given the confusion matrix for a content
class, it seems to be possible to infer only crude generalizations of what the average precision and recall curves
might look like for that class.

Furthermore, these per-page inventory scores seem to be significantly less sensitive to the arbitrariness of zoning
methodologies than per-pixel accuracies are.

Subjective segmentation quality. This is a subjective assessment of the quality—expressed as ’good’, ’fair’, and
’poor’—of the classification as a guide for geometric segmentation of the page area into regions of different content
classes. Eventually, automatic methods may be developed to convert a pixel-based classification into one of many
possible region-based segmentations: this measure attempts to predict how well that could be done. For lack of
space we will not attempt to quantify this here, but we will discuss a wide range of illustrative examples, in the
next Section.

4.1. Discussion of Experimental Results

The next four Figures (8, 9, 10, and 11) show classification results for selected images from the development data set A.

Figure 8 shows results on two magazine pages. These illustrate one of the methodological problems with using
comparison to ground-truth files as our evaluation metric, inasmuch as our ground-truth labels rectangular zones, while
obviously the text blocks here are not laid out in rectangles. Arguably these classification results are in some ways better
than the per-pixel accuracy scores suggest: we feel justified in assigning a “good” rating for its subjective segmentation
quality.

Figure 9 shows results on three pages containing handwriting, in bilevel, greylevel, and color images. The classifier
locates the handwriting in detail, not merely approximated as rectangles (as the ground-truth zoning does). In the last
example the lines of the legal pad are misclassified as machine print, suggesting that better features are needed.

Figure 10 shows results on clippings from two newspaper pages annotated with handwriting. In both samples the
handwriting blocks are indicated by a higher concentration of pink, but the classification remains ambiguous since some
pixels are classified as machine print. Note that, in the photograph in the first image, the text on the football player’s
jersey is correctly identified as machine print.

Figure 11 shows three magazine-article pages with more complex layouts. Foreground text occurs on backgrounds of
contrasting color, and there is both black-on-white and white-on-black text. The layouts are partly non-rectangular, with
photographs intruding past the vertical margins of text areas. This illustrates a strength of our policy of classifying pixels
rather than regions.

Figures 12, 13, and 14 show classification results from data set B. The number of sources and images used in the
training set were roughly doubled from data set A. As a result of some of these engineering decisions, performance on
things like machine print and photographs appears to have improved, while performance on blank space has become
noticeably worse.



Figure 8. Test page images containing relatively simple magazine article layout. The first image contains blank (shown
as white), machine print (blue), and photograph (green) content and the second also contains handwriting annotations
(pink). In the first image 86.72% of the pixels were correctly classified and 70.4% in the second. We subjectively rank
the segmentation quality as good except perhaps for a fraction—less than 20%—of the photograph regions.

Figure 9. Test page images containing handwriting. From left to right their per-pixel accuracies are 79.0%, 64.0% and
70.1%. We subjectively rank the segmentation quality as good with the exception of a small region in the first image near
the left bottom margin.

Figure 10. Test page images of newspaper clippings containing machine print annotated with handwriting, both from
the same publishere but of different image qualities. From left to right their per-pixel accuracies are 52.9% and 71.3%.
The segmentation quality of machine print is generally good, but there are confusions with handwriting especially within
areas of large print. The segmentation quality of handwriting areas is also good.



Figure 11. Test pages images containing complex magazine-article layouts. Per-pixel accuracies are, left to right: 66.9%,
61.1%, and 58.8%. Body-text machine print segmentation quality is generally good. Most of the photographs are largely
classified correctly. Confusions between machine print and photographs are not rare, but on close inspection (difficult in
this Proceedings) many are arguably right. A few areas are spuriously classified as handwriting.

Figure 12. The page on the left illustrates excellent subjective segmentation accuracy for MP and PH, but also the high
rate of confusion between BL and HW. The page on the right illustrates a methodological quandary in the zoning of large
uniformly pale regions in photographs (here, the sky behind a cityscape) which are statistically indistinguishable from
blank areas in other pages: still, the classifier performs fairly well. Per-pixel accuracies: left 70.8%, right 52.5%.

Figure 13. The page on the left illustrates success on a difficult case where the blank region that forms the background
of most of the page bleeds imperceptibly into a photograph at the bottom. The page on the right illustrates an unusually
complex nonrectilinear layout: when this is studied closely, it reveals many cases of successful discrimination between
machine print and photographs on small irregularly shaped regions. Per-pixel accuracies: left 69.3%, right 35.0%.



Figure 14. The magazine page image on the left is remarkably well segmented: almost all text, including text embedded
within photographs, is correctly labeled. The page on the right illustrates success on related, challenging cases: text
overprinted on regions of arbirary solid color. Per-pixel accuracies: left 70.9%, right 73.8%.

Figure 15. The results of classifying an image when decimating the training file used for classification. The first image
on the left is the source image and from left to right after that are the results of using every training pixel (80.4% correct),
every 10th pixel (72.9%, speedup of 7.9x), every 100th pixel (76.2%, 57.9x), every 500th pixel (70.0%, 212.5x), and
every 1000th pixel (66.6%, 354.2x). Machine-print and handwriting segmentation quality is generally good even though
the number of unclassified (grey) pixels increases noticeably; but confusions between handwriting and photographs are
sometimes glaring.

4.2. Speed-ups by Decimation

We noticed that we could speed up classification by large factors with little loss of accuracy, regardless of the classifica-
tion method being used, simply by randomly throwing away most of the training pixels. Apparently this reflects high
redundancy in much of the training data, a result of widespread isogeny (the tendency for data in the same image to have
been generated by highly similar processes). Figure 15 shows, on the left, a test page image and, on the right, five results
of classification (using the brute-force 5NN classifier) with fewer and fewer training samples. With a decimation of 1000
times (999 out of 1000 pixels omitted), per-pixel accuracy had fallen from 80% to 67% with a speed-up of a factor of over
350: although the per-pixel accuracy fell considerably, the subjective segmentation accuracy remained good.

5. DISCUSSION AND FUTURE WORK

Experiments have been scaled up by an order of magnitude since our last report, and include a richer diversity of document
types, content classes, and image formats: we are pleased to see that per-pixel accuracy remains usefully high on at least
two-thirds of the test images, and we are happy and surprised to see that our classifiers already support usefully high
recall and precision performance on natural queries. We remain surprised and intrigued by the fact that results on color
document images remain good without the use of any features computed from the hue and saturation channels in the HSL
color space; we suspect that this will be necessary eventually. We are of course exploring better features, and faster and



more accurate classifiers. Providing convincing evidence of the desired versatility of our approach will depend both on the
discriminating power of the features we design—which still need improvement—and on our ability to run experiments on
a far larger scale, which in turn demands faster and yet more accurate classifiers and the ability of the classifiers to learn
from huge training sets. We are increasingly dependent on large-scale GRID computing to drive development of these
algorithms. To put it in a nutshell: versatility demands voracity.
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